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Abstract. Die-cast aluminum alloys are heavily used in small engines, where they are subjected to
long-term stresses atelevated temperatures. The resulting time-dependent material responses can result
in inefficient engine operation and failure. A method to analytically determine the stress relaxation
response directly from creep tests and to accurately interpolate between experimental time-history
curves would be of great value. Constant strain, stress relaxation tests and constant load, creep
tests were conducted on aluminum die-casting alloys: B-390, eutectic Al-Si and a 17% Si-Al alloy.
A nonlinear superposition integral was used to (i) interpolate between empirical primary inelastic
creep-strain and stress-relaxation time histories and (ii) to determine the stress relaxation response
from corresponding creep data. Using isochronal stress-strain curves, prediction of the creep response
at an intermediate stress level from empirical creep curves at higher and lower stresses resulted in a
correlation (R) of 0.98. Similarly for relaxation, correlations of 0.98 were obtained for the prediction
of an intermediate strain level curve from higher and lower empirical relaxation curves. The theoretical
prediction of stress relaxation from empirical creep curves fell within 10% of experimental data.

Key words: aluminum, constitutive models, creep, interpolation, interrelation, nonlinear superposi-
tion, relaxation, viscoelasticity

1. Introduction

1.1. NEED FOR MATERIAL CHARACTERIZATION AND MODELING

Currently, small engine design is done with the designer’s awareness of the time-
dependent nature of their materials. Extensive data have been collected and can

*This paper has not been submitted elsewhere in identical or similar form, nor will it be during the
first three months after its submission to Mechanics of Time-Dependent Materials.
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be found in the literature for creep in pure aluminum (Servi and Grant, 1951;
Dorn, 1954; Luthy et al., 1980; Ishikawa et al., 2002; Ginter and Mohamed, 2002),
various aluminum alloys (Kim et al., 2000; Bae and Ghosh, 2002) and aluminum
composites with SiC particulates (Spigarelli et al., 2002; Ma and Tjong, 2000),
however experimental data for die-cast alloys are sparse. Since the die-casting
process is extremely variable from manufacturer to manufacturer (in regards to
gating methods, mold sizes, pressures and temperatures) and since die-cast alloys
have been traditionally known to exhibit poor creep resistance, the study of die-cast
aluminum alloys has been largely neglected by academia in favor of alloys that are
theoretically more creep resistant, such as the nickel based superalloys (Nabarro
and De Villiers, 1995). However, the need for the die-casting industry to acquire
adequate analysis tools, and to obtain reliable data has heightened as current market-
driven performance demands have escalated. Achievement of elevated design goals
requires the development of robust constitutive models describing the die-casting
industry specific materials. These expressions can then be used as inputs for finite
element analysis and other methods used for design and development. Constitutive
equations are powerful tools because of their general form, however application
of these equations can be challenging when the description of complex behavior
requires many parameters. This paper demonstrates a way with limited testing to
determine the parameters which robustly predict inelastic behavior in the context
of nonlinear viscoelastic superposition.

Creep and stress relaxation can both lead to degraded engine performance. Com-
ponent failure or loss of tolerance, occurring largely in bolted joints, can contribute
to engine inefficiency through seal leakage and piston blow-by. The casual mecha-
nisms for both creep and relaxation involve diffusion, dislocation motion and grain
boundary sliding, however, the details of these mechanisms are beyond the scope
of this work. Herein, we concentrate on obtaining a robust constitutive description
for the complex material behavior by employing a constitutive model based on
single integral, nonlinear superposition to describe the creep and stress relaxation
response. The method presented is not limited to the aluminum alloy studied here
but is broadly applicable to other nonlinear materials, such as ligaments (Ozaetal.,
2001), and other materials, such as polymers, which exhibit primary creep. The
method used here is not intended for large deformation plasticity.

1.2. INELASTIC, TIME DEPENDENT BEHAVIOR

Metals at high homologous temperature (temperature on absolute scale divided by
the melting temperature) greater than about 0.6 exhibit substantial time dependent
behavior. At sufficiently small strain, typically below 1073, behavior follows linear
viscoelasticity (Nowick and Berry, 1972), and is recoverable, therefore is referred to
as anelastic. If the strain is moderately high, the behavior is nonlinear: the modulus
as a measure of stiffness depends on strain and the time dependence depends on
strain.
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In linearly viscoelastic solids, one can readily interrelate creep and relaxation via
Laplace transformations. Several interrelations have been presented for nonlinear
time dependence but they generally do not involve superposition and they are
inapplicable to primary creep. The interrelation of Ashby and Jones (1980), for
example, assumes secondary creep. The rate of strain ¢ is assumed to be a power
law in stress o, de/dt = Bo". This does not allow for primary creep, which we
observe in the present study. The total strain ¢ is regarded as the sum of an elastic
part easic = 0/E and a creep part Ecreep. Also, the approach does not reduce to
linearly viscoelasticity at small strain. Specifically, the creep is nonlinear for all
stress levels with no linear term. Ashby and Jones differentiate, substitute, then
integrate over a range, to obtain the following relation for stress relaxation

o) = lBE(n — 1 + ((,nl-l)} =
0

The resulting stress relaxation is not particularly realistic. It is nearly constant
at short time and for n = 2 and for long time ¢, it goes as 1/¢. Other methods
for secondary but not for primary creep were reviewed by Popov (1947) who
also developed an implicit interrelation for a specific constitutive behavior sep-
arable into a product of time-dependent and stress dependent terms. However,
Lakes and Vanderby (1999) showed by a superposition method that a separable
form for creep leads to a non-separable form for relaxation. Rate-based studies
make the simplifying assumption that the same relation between stress and creep
strain rate is valid both under conditions of constant stress (creep) and constant
strain (relaxation). Such an assumption is not likely to be valid for real materi-
als. Touati and Cederbaum (1997) presented a complex and laborious numerical
method to convert the separable creep model of Schapery (1969) into a set of
first order nonlinear equations to predict relaxation. Again, Lakes and Vanderby
(1999) showed that a separable form for creep leads to a non-separable form for
relaxation.

Viscoplasticity models for metals also make use of strain rate in the constitutive
equations. Many such models are reviewed by Lemaitre (2001). Emphasis is placed
upon deformations of at least several percent strain under constant strain rate. For
example, Bodner and Partom (1975) suggested a model in which the plastic strain
rate is expressed as a nonlinear function of effective stress. Model parameters are
extracted from monotonic stress strain curves at different strain rates (Chan et al.,
1988). Refinements, presented by Bodner (2001) include temperature effects, of
effects temperature variation, and stress reversals. Ellyin (2001) studied such rate
effects in connection with numerical analysis of yield.

The viscoplasticity approach is appropriate for metals at large strain and rela-
tively large strain rates from 103 to 10* sec™'. A superposition approach is adopted
here since it reduces properly to linear viscoelasticity at small strain, and since it
allows a transparent interrelation between creep and stress relaxation. In the long
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term creep tests presented here, strain rates are 107'% to 10° sec™ so use of the
rate control approach used in viscoplasticity would be problematical.

1.3. NONLINEAR SUPERPOSITION

The most general constitutive equations describing the time dependent stress and
time dependent strain for linear viscoelastic materials are Boltzmann integrals, in
which ¢ is time, J () is the time dependent creep compliance and E(?) is the time
dependent relaxation modulus. For linear materials there is no strain dependence
on the relaxation modulus or stress dependence on the creep compliance as shown
in Equation (1a) and (1b).

o(f)= / E( —z)dfi(’)dr (1a)
0 T
t

£() = f I —r)d‘;(’)dr (1b)
i} T

Some nonlinear materials may behave linearly, or at least appear to, for small strains
and low temperatures especially if the time window is small. Material nonlinear-
ities can manifest themselves even at moderate strains, but nonlinear effects take
the forefront as the operating window is pushed to its extremes in stress/strain,
temperature and operating life-time. If one is to consider a nonlinearly viscoelas-
tic material the strain and stress dependence on the relaxation modulus and creep
compliance respectively must be included in the time integral.

The nonlinear superposition method considered in this work, expressed as
Equation (2) for stress relaxation and Equation (3) for creep, allows the relax-
ation modulus, E, and creep compliance, J, to be not only functions of time but
also of applied strain and stress respectively.

t
o(t)= f E¢ -, g(r))dz(t)dr, @
0 T
t
£(t) = f It —r,a(r))dc;(r)dr. 3)
0 T

These nonlinear relations are a special case of a general nonlinear expansion ofa
nonlinear functional (Green and Rivlin, 1957; Lockett, 1972; Findley et al., 1976),
applicable to systems of any degree of nonlinearity. They are superposition integrals,
capable of handling arbitrary stress or strain histories including creep, relaxation, re-
covery, multiple steps, and constant strain rate. A constant strain rate experiment can
be modeled by letting the strain in Equation (2) exhibit a linear dependence on time.

This study makes use of the nonlinear superposition relations, Equations (2)
and (3) to (i) interpolate between empirical creep curves and (ii) interpolates be-
tween two relaxation curves using an assumed constitutive equation and a 3-point
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isochronal method, and (iii) predict the relaxation response from an empirically fit
creep curve using nonlinear superposition for the interrelationship. Validation of
the use of nonlinear superposition is important technologically since mechanical
testing can be expensive and time consuming. Thus, the ability to accurately de-
termine the viscoelastic response for any input condition from a small number of
empirical curves will decrease design costs and increase product quality and safety.
Additionally, accurate prediction of the losses in a bolted joint, where both creep
and relaxation occur, often requires intimate knowledge of the material’s response
between empirical curves.

2. Methods

2.1. INTERPOLATION BETWEEN (I) CREEP AND (II) STRESS RELAXATION
TIME HISTORIES

A numerical procedure for both the interpolation techniques is included in the Ap-
pendix. A discussion of the major points and ideas is conducted here to elaborate on
the rationale. Both the interpolation and interrelationship methods utilize isochronal
curves in which points on the stress-strain curves are taken at constant time and
temperature. Each point on an isochronal curve is obtained from a different creep
or relaxation test.

2.1.1. Creep Compliance
The creep compliance of a nonlinear time dependent material may be written as a
power series in time # and stress o as follows.

J(t,O')=g1+g20'pt"+g3o'qt’"+... )

The first term represents elastic behavior. Higher terms represent time dependence
with the possibility of linear viscoelasticity or nonlinear viscoelasticity or inelastic
behavior. Since the complexity of the interrelation grows rapidly with the order of
the term (Oza et al., 2003), it is expedient to truncate the series to the minimum
length consistent with the data at hand. For the present study, two terms suffice.

A 3-point isochronal method, described in Appendix A, is used to obtain g1, g2,
p and n for Equation (4), from the experimental data. The value of ‘ p’ that we have
chosen is 0.75 as it was found to fit the isochronal data points for the present alloy
well.

Since the strain is ¢ = J (¢, o)o, we get (understanding the stress is constant in
creep)

£=g10 + o't ®)
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Data were collected for both creep and relaxation at different stress and strain levels
respectively (Jaglinski and Lakes, 2004). Isochronals at three different times are
fitted to the experimental data with the above equation via methods in the Appendix.
The chosen form for creep compliance is non-separable since it cannot be factored
into a product of stress dependence and time dependence.

2.1.2. Relaxation Modulus

The stress-strain values at different times are derived from relaxation data.
Equation (6) is the assumed form for the relaxation modulus to be used for the inter-
polation method. Again, as for creep interpolation, the 3-point isochronal method
is used to obtain f, f> and n from Equation (6).

E(I, 8) — f1£0.05 + f2£0.75t—n (6)

Values of 0.05 and 0.75 are chosen for powers of strain as they were found to fit the
isochronal data points for the present alloy well. Analysis of other materials via the
present method would involve different exponents, to be extracted from the data.
For the present experimental results, n < 1 expresses the fact the creep is primary
creep. Details of the method and values obtained after fitting the relaxation data are
given in Appendix B. This interpolation is not related to the interrelation of creep
and relaxation which is developed in Section 2.2.
Since the stress is ¢ = ¢ E(¢, &) it may be written

g = f181.05 +f2€1'75t_n (7)

2.2. INTERRELATION OF STRESS RELAXATION FROM CREEP
USING NONLINEAR SUPERPOSITION

The single-integral constitutive equations used are Equation (2) for relaxation and
Equation (3) for creep. Time-dependent strain due to constant creep stress can be
written as a sum of immediate and delayed Heaviside step functions in time H (¢)

N
&) = e(OH(®) + }: Ag;H(t — 1) (8)
i=0

Each step strain in the summation gives rise to a relaxing component of stress in
view of the definition of the relaxation function. Decomposition of creep into step
strains and generation of relaxation due to each step strain are shown in the top and
bottom diagrams of Figure 1. Nonlinearity is accommodated in this analysis since
the relaxation function E explicitly depends on strain level.

N
o = eOE(, £0) + )_ A E —1;, e(t) ©)
i=0
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Figure 1. Top: decomposition of a creep function J(z, 5p) as a sum of immediate H(¢) and
delayed Heaviside step function H{z — #;) in time #. Bottom: the constant stress ‘g’ which is
the same as ‘o’ in the text gives rise to creep expressed as a sum of relaxing components, each
of which comes from a step function in the decomposition of the creep curve above.

Here we assume there is no effect from interactions between the step com-
ponents, hence we consider single-integral type nonlinear response (Lakes and
Vanderby, 1999) and exclude responses which must be describable by a multiple
integral formulation.

Dividing by o and using the definition of creep compliance,

N
1=J0,0)E(, 0) + »_ ALE® — t;, 6(t)) (10)
i=0

Pass to the limit of infinitely many fine step components to obtain a Stieltjes integral,
with t as a time variable of integration,

daJ(z, a)dr.
Jat

t
1=J(0,0)E(t, &0)) + / E(@t —t, (1)) (11)
0

The creep compliance J is a function of time and stress. As in the linear interrela-
tion, time dependence appears in the integral as dependence on a time variable of
integration. Since for creep under constant stress, o (f) = Ofort <Oando(?) =0
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for t > 0, we have &(t) = o J (¢, 5), so Equation (11) becomes

8J(r, o)

dr. 12
at t 12

t
1=J0,0)E(t,0J(0,0))+ / E(@ —t,0J(z,0))
0

To develop an explicit relationship between creep and relaxation, one assumes a
particular functional form for one of the viscoelastic functions. For example, Lakes
and Vanderby (1999) used this Stieltjes integral to show that a separable form of
creep (e.g. J (¢, 0) = j(t)g(o)) givesrise to a non-separable relaxation function as
described earlier. Other interrelations in the literature are discussed in Oza et al.
(2003).

Use of this formulation below provides validation of the model and will allow
the reduction of the required number of experiments needed to thoroughly map a
material’s response over a range of stress, temperature and time, thus minimizing
experimental costs.

2.3. Two TERM FORMULATION

We use an explicit form for creep compliance, similar to Equation (4) and using
the semi-inverse method in the formulation below, we show that the corresponding
assumed form of relaxation modulus predicts relaxation from creep. In this case,
assumption of a purely elastic term is not possible in the creep compliance equation
due to mathematical constraints in the formulation. So the power of time of the first
term in Equation (13) is assumed to be very small. This makes the first creep
compliance term, a quasi-elastic term.

Assume the creep behavior to be as follows, and restrict the power of stress
in creep compliance to 0.75 throughout the analysis. The value of 0.75 was ob-
tained from fitting of the nonlinear behavior of the metals in the present study. The
value 0.001 was obtained from the observation that the stress-independent part of
the compliance in these metals was virtually elastic (time independent) within the
experimental resolution. A small nonzero value was used for the exponent since
the interrelation equations are available for explicit power laws and since materials
always exhibit some creep even at arbitrarily small stress.

J(t,0) = git" P! + g6 (13)
Assume a non-separable power law form of relaxation, given as:
E(t, &)~ fit "% + fre(t)* 7171 (14)
in which fi, f> and g are to be determined by the analysis.
The interrelation is based on the single Stieltjes integral form of Equation (11).

The creep function is differentiated and the functional forms substituted. Stress
independent terms are used to develop the relation between fi and g1, 07 terms
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are used to develop the relation between f> and g, and higher order stress terms
(o™) are used to develop the relation between f, and g,. Since we have a two-term

form of creep compliance and relaxation modulus, we ignore terms greater than
075
g .

While solving the Stieltjes integral, we equate all ‘o’ independent terms to 1 to
solve for f; and all the ‘c%7>’ terms to 0 to solve for f3.
Then,

E(t, 8([)) — flt—0.00I + fzg(1).750.0.75t—q+0.00075 (15)
Since J(0) = 0, the first term in the Stieltjes integral vanishes.

Substituting (15) and the derivative of the creep compliance in the Stieltjes
integral,

1= /t {f1(t — )01 4 fzg?'750°'75(t _ T)_q+0'00075}{0.001g1r“0~999
st (16)
Equation (16) is of the form,
140x06®P =a+ bg 073 an
Soa =1 and b=0. a18)

Since Equation (16) is of the same form as Equation (17) and based on Equation 17)
and its solution in Equation (18), we equate ‘o’ independent terms in Equation (16)
to 1 and all ‘6%’ terms in Equation (16) to 0.

From Equation (16), we get

t
1= figi f 0.001(r — 7) 0001 099,
0

1
1= —0.001 1
flglsinO.OOlrrO i (19

1 ~
where momlﬂ' =~ 1.

So fi = ﬁ as in the linear case.
Now we take all the ‘o%73 terms

t
O=f1g2f m(t — ) 0% de
0

t
+f2g11,75 / 0.001(r — .r)—q+0.00075r—0.999d1,
0
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I'(0.999)(m) } m-0001
T'(m + 0.999)
I'(—q + 1.00075)T"(0.001) } (-a00017
T(—¢ + 1.00175)

0=f182m[

+ f>£117°0.001 { (20)

Here T is the gamma function. To account for time-dependence, powers of the time
terms must be the same.

m — 0.001 = —q + 0.00175
q=0.00275 — m Q1)

Substituting (21) in (20), we obtain

I'(0.999)(m) } m-o001
T(m +0.999)
T'(0.998 + m)T'(0.001) } o000t
T(m + 0.999)

0=f182m[

+ f28117°0.001 {

Canceling the common terms from the above equation and solving for fa, we
obtain

h= & 22)
0.001g,175I"(0.998 + m)I'(0.001)
Since T'(0.001) = 1000 and I'(0.999) ~ 1, Equation (22) becomes
- mI(m
he figamI'(m) 23)

= 2111 (0.998 + m)

Values of f; and f, obtained can be used in Equation (14) to predict the relaxation
curve,

2.3.1. Experimental Methods
Alltest specimens were supplied by commercial die-cast component manufacturers.
As-cast tensile specimens were used with gauge dimensions of 2.5" long x 0.25"
diameter and 2.5” long x 0.245” diameter due to two different specimen sources.
The alloy compositions in weight percent were as follows: B390 as Al-17Si-
4Cu-0.5Mg, Eutectic Al-13Si-3Cu-0.2Mg, (hereafter referred to as eutectic) and
Al-17Si-0.2Cu—0.5Mg—1.2Fe (referred to hereafter as Al-178i).

Constant strain stress relaxation tests were conducted on an MTS servo-
hydraulic test frame (20,000 1b MTS, Minneapolis, MN). A Lindberg furnace
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with integral controller provided temperature control. Micromeasurements WK-
13-250BG-350%2 strain gauges were used for creep and relaxation testing. Strain
gauge conditioning was handled by the internal signal conditioner, however due to
the small bridge balancing range of the internal conditioner an extra in-line (be-
tween the sample and the conditioner) bridge balancing resistor was added to handle
coarse adjustments. Excitation was set by using the shunt calibration method at full
scale, or 1 V=1 x 1073 strain for a total of 1 x 1072 strain for 10 V.

All relaxation tests were conducted in strain control mode set at the 20% range
or 1 V=2 x 10~ strain. For sample installation and test warm-up, however, the
machine was set to stroke control to maintain actuator position due to thermal drift
in the bridge circuit while bringing the sample to temperature. The sample was
brought to temperature in the testing fixture and maintained at steady state for at
least 12 hr prior to application of strain.

The initial 200 sec were captured using a Tektronix TDS420A oscilloscope.
Data after 200 sec were taken manually by reading the digital output on the MTS
frame in such a way as to approximate logarithmic time steps. Data are not reported
until after the first 10 sec of each test since the rise-time of the load history was
about 2 sec. Relaxation tests were run for 7 days. Strain levels chosen for relaxation
corresponded to the stresses run for creep.

All the three aluminum-silicon alloys i.e. B390, eutectic Al-Si alloy and Al-
17Si were tested at 220 °C at 31, 57 and 73 MPa for creep and 430 x 1075, 850 10~°
and 1200 x 1079 strain for relaxation. The rise time was 2 sec for creep. Stress or
strain versus time data were plotted on a log-log scale. Isochronals (stress-strain
curves at a particular time) were used for curve fitting as described in Appendices
A and B.

3. Applications of the Nonlinear Superposition

3.1. INTERPOLATION BETWEEN EMPIRICAL CREEP-STRAIN
AND STRESS-RELAXATION TIME HISTORIES

Results from the eutectic Al-Si alloy are presented in Figure 2 for creep and Figure 3
for relaxation. Equation (4) is used to model the creep compliance. Isochronals are
created from the creep tests done at 31 and 73 MPa. g, g, and » are obtained by
fitting three different isochronals as discussed in Appendix A. These values are
then used to predict a creep curve at an intermediate level of 57 MPa. A correlation
(R) of 0.96 was obtained (via KaleidaGraph software (Synergy Software, 2457
Perkiomen Avenue, Reading, PA 19606, USA)) for a prediction of a creep curve
done at 57 MPa. Correlation (R) is a measure of the strength of association between
two variables (Kocher and Zurakowski, 2004).

For the relaxation modulus modeling, Equation (6) is used. Isochronals are
created from the relaxation tests done at 430 x 1076 and 1200 x 1078 strain. fi, f>
and n are obtained by fitting three different isochronals as discussed in Appendix B.
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Figure 2. Three creep curves (31, 56 and 73 MPa) at a constant temperature of 220 °C are
plotted against time. Creep at 31 and 73 MPa are fitted with ¢ = g1o + g20 173" where the
coefficients are obtained from isochronals of the stress levels. Using the obtained coefficients,
creep at 56 MPa is predicted very well.

These values are then used to predict a relaxation curve at an intermediate level
of 850 x 1079 strain. A correlation (R) of 0.98 was obtained for a prediction of a
relaxation curve done at 850 x 107S.

So, in this technique, creep tests at two different stress levels (31 and 73 MPa)
are curve-fitted using the method given in Appendix A to obtain g1, g2 and n. These
coefficients are substituted in Equation (4) to predict the creep response at a stress
level of 57 MPa.

Similarly, relaxation tests at two different strain levels (430 x 107% and 1200 x
10~%) are curve-fitted using the method given in Appendix B to obtain fi, f> and 2.
These coefficients are substituted in Equation (6) to predict the relaxation response
at a strain level of 850 x 10~.

It should be noted that the values g1, g2, fi1. f2, and n are used only for the
interpolation scheme and a new set of values are determined for the interrelationship.

3.2. INTERRELATION OF STRESS RELAXATION FROM CREEP

Creep curves at 31 and 57 MPa are fitted with Equation (4) for creep compliance
using the method explained in Appendix A. Figure 4 shows the theoretical curve
fit obtained for creep curves at stress levels of 31 and 57 MPa.
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Figure 3. Three relaxation curves (430 x 1076, 850 x 107 and 1200 x 107 strain) at a
constant temperature of 220 °C are plotted against time. Relaxation curves at 430 x 1076 and
1200 x 10~ are fitted with ¢ = f1e!0% + f2£"75t"’ where the coefficients are obtained
from isochronals of the strain levels. Using the same coefficients, relaxation at 850 x 1076 is
predicted very well.

Using the interrelation formulation given in Section 2.2, coefficients for corre-
sponding relaxation modulus (Equation 6) were determined. Using Equation 6 for
the relaxation modulus and coefficients calculated by the interrelation, relaxation
was then predicted for strains at 430 x 10~% and 850 x 107%. Due to the nature of
interrelated parameters, the shape of the creep curve and the shape of the relaxation
curve are explicitly dependent on each other. Thus a small change in the input pa-
rameters used in the equation to fit the creep curve, produce a large change in the
interrelated parameters of the relaxation modulus.

4. Results and Discussion

The goal of this study was to interpolate between empirical creep-strain and stress-
relaxation time histories and to determine the stress relaxation response from cor-
responding creep data. Herein we have developed analytical methods based on
nonlinear superposition to robustly describe creep and relaxation response. It was
shown that any creep or relaxation at an intermediate stress or strain level can be
predicted by using the coefficients obtained from the 3-point isochronal method.
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Figure 4. Two creep curves (31 and 56 MPa) at a constant temperature at 220 °C are plotted
against time. Creep at 31 and 56 MPa are fitted with £ = g0 +g20 17" where the coefficients
are obtained from isochronals of the stress levels.

Very high correlations of 0.98 and 0.98 are obtained using nonlinear superposition
shown in Figures 2 and 3 for creep and relaxation respectively. The forms used in
Equations (5) and (7) to fit and interpolate between creep and relaxation curves
respectively are very simple and give good results for a wide range of stress levels
for creep and strain levels for relaxation. The interpolation technique was also used
to fit creep data at 92 MPa. Since the model we have used has only one stress-
dependent term, there is a window restriction of stress and time. Moreover, stress
levels of 92 MPa are quite unrealistic during normal engine operating conditions
since 92 MPa is approximately 80% of the yield stress at 220 °C. So, the method
we have used works very well over a practical envelope of realistic stress and strain
levels.

In this work, creep and stress relaxation are also interrelated for primary creep
described by a sum of power-law terms in time, within the framework of single
integral nonlinear superposition. Figure 5 shows relaxation curves predicted from
creep using the formulation above. Predicted results lie within 10% of experimental
data. However, one reason for the offset of the prediction from the experimental
data lies in the fact that the applied strains for the relaxation tests did not exactly
correspond to the applied stresses for the equivalent creep tests. Also, the model
for creep and relaxation that we have used for comparison with experiment is first
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Figure 5. Prediction of relaxation from creep; comparison with experimental relaxation of
alloy. The two corresponding strain levels for relaxation are £1 (430 x 10~) and £ (850 x 107).
Similarly relaxation data of aluminum for two different strain levels are predicted very well by
the interrelation used in this formulation. The points in the figure give the experimental curve,
while the solid line is the theoretical prediction.

order in stress dependence. We have fitted the creep curve for six decades of time
in seconds as shown in Figure 4 and predicted relaxation for six decades of time
in seconds as shown in Figure 5. Even linear viscoelastic materials display a creep
response with longer time constant than that for relaxation. One anticipates that a
longer creep test must be used to predict relaxation for a shorter time for weakly
nonlinear time dependent solids as well.

Simplicity in the phenomenological viscoelastic model and analytical inter-
relationship developed herein can be used to model more robustly many com-
plex viscoelastic materials in the regime of weakly nonlinear time-dependence,
and to reduce the number of tests required to characterize both creep and
relaxation.

5. Conclusion

Experimental results for two Al-Si alloys disclosed primary creep behavior con-
sistent with nonlinear superposition. Results for intermediate values of stress and
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strain were well modeled by a constitutive formulation based on upper and lower
values.
Relaxation predicted from creep was within 10% of observed relaxation.

Appendix A

To construct the isochronals for purposes of interpolation and interrelation, two
empirical creep curves at different levels of applied stress, but at constant material
composition and temperature, are required.

The equation chosen for creep is

£ =g10 + g t" (A1)

We will construct three isochronals, which for example can be at time ¢t = 0, 1 and
any other point in time.

Three steps are required to find the values of g1, g2 and ». [1] The isochronal for
¢t = 0is curve fitted with ¢ = g0 from Equation (A1) to get g1, [2] the isochronal
for ¢ = 1 is curve fitted with ¢ = g0 + goo'7° from Equation (A1) and the value
of g; obtained from step [1] to get g, and [3] the isochronal for ¢ = x where x is
some point in time and the value of g, and g, are substituted into Equation (Al) to
obtain n.

Since there is no data point at ¢ = O or 1 sec due to the experimental rise time, the
first and second point in time for the isochronals were selected at 10 and 5000 sec
respectively. Based on Figure 2, three points (low strain, mid strain and high strain)
had to be selected for the isochronals so that the entire creep regime is covered.
The first and second point in time for the isochronals at 10 and 5000 sec represent
points in the low and mid strain region respectively.

We substitute 1 = (¢, — 10)/4990 into Equation (Al), where ¢, are the actual
times. So at t; = 10 sec and using the relation ¢ = (f, — 10)/4990 we gett =
10 — 10/4990 sec which is equal to 0. So ¢ = 0 at t; = 10 sec. Similarly, we
obtain ¢z = 1 at t, = 5000 sec. For our case, the last point in time for the isochronal
that we selected is £, = 90000 sec and using the same above relation we get
t = 18.03 sec.

Appendix B

The procedure for isochronal construction and curve fitting to describe relaxation
is basically the same as that used in Appendix A. This procedure is applied to curve
fit relaxation curves in Figure 3.

However, the equation used for relaxation curves is

o = f181.05 +f281.75t—n (Az)
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Again, three isochronals are constructed at # = 0, 1 and any other point in time (x).
Similarly, the three step process is as follows: [1] The isochronal for ¢ = 0 is fitted
with o = f1£''% from Equation (A2) to obtain fi, [2] the isochronal for r = 1 is
fitted with o = f1£"® + f,61'7 and the value of fi to determine f>, and [3] the
isochronal at ¢+ = x and known values of fi and f, are substituted into Equation
(A2) to obtain n.

Again, no data exists at # = 0 or 1 sec, so the first and second point in time
for the isochronals selected were at 14 and 190 sec respectively. Based on Figure
3, the three points (low stress, mid stress and high stress) had to be selected for
the isochronals so that the entire relaxation regime is covered. The first and second
point in time for the isochronals at 14 and 194 sec represent points in the high and
mid stress region respectively. Any other points in time also could be selected.

So we substitute ¢t = (t, — 14)/176 into Equation (A2) where t, are the actual
times. This gives t = O at#; = 14 sec and t = 1 at #; = 190 sec.

So at #{ = 14 sec and using the relation ¢t = (1, —14)/176 we get ¢t =
14 — 14/176 which is equal to 0.

Sot =0att = 14 sec.

Similarly, we obtain t = 1 at £, = 190 sec.

For our case, the last point in time for the isochronal that we selected is £, =
2.5 x 10° sec and using the same above relation we get ¢ = 1420.3 sec.
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