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Abstract
The effect of a complex coefficient of thermal expansion upon the thermoelastic relaxation

mechanism is analyzed. A phase angle in the thermal expansion has the effect of generating a very
broad band of mechanical damping, in addition to the peak usually observed. Phase angles in the
thermal expansion have been observed in several polymers, and they may be generated in composite
materials in which one or more phases is viscoelastic. However the resulting enhancement of the
overall damping of the composite is modest, unless new materials can be found with very high
relaxation strength or with a large intrinsic phase angle in the expansion.

1. INTRODUCTION
Thermoelastic relaxation is a coupled-field type viscoelastic mechanism. Relaxation

proceeds to a non-zero asymptotic value of stiffness, therefore it is regarded as anelastic.
Thermoelastic relaxation, initially explored by Zener [1-3], occurs in all materials which exhibit
thermal expansion. It is present whenever there is inhomogeneity of temperature, since the
consequent flow of heat gives rise to a dissipation of energy. Temperature inhomogeneity can arise
due to an inhomogeneity of dilatational stress. Stress inhomogeneity occurs in some types of
vibration, such as bending vibration of reeds. Inhomogeneity of stress also is present if the material
has cavities, discrete phases, or anisotropic crystallites with random orientation. There is also a
homogeneous thermoelastic relaxation governed by heat flow between the specimen and the
environment. The maximum tan δ due to thermoelastic damping depends on the relaxation strength
∆, defined as the change in stiffness during relaxation divided by the stiffness at long time t, or in
the formulation of creep compliance J(t), as follows.

∆ = 
J(∞)  - J(0)

J(0)  .  (1)

For thermoelastic relaxation, the relaxation strength is

∆ = 
α2T
CvJS

, (2)

with α as the thermal expansion coefficient, JS = J(0) as the adiabatic compliance, T as the absolute
temperature and Cv as the heat capacity per unit volume. When the relaxation strength is small as it

is for this mechanism, the maximum tan δ for a Debye peak is 1
2∆. Values of 12∆ for some common

materials are 0.0012 for Fe, 0.0024 for Al, 0.0003 for SiC, and 0.0089 for Zn. Thermoelastic
relaxation is most important in metals and ceramics in which it may comprise most of the total
relaxation. Experimental verification of the theory was reported by Zener and co-workers [3,4].

Dissipation of mechanical energy in a cyclic load history with heat flow is illustrated in Fig.
1. The history consists of three portions. First the solid is loaded slowly at constant temperature
(isothermally). It is then unloaded adiabatically, too rapidly for heat flow to occur, with the slope of
the stress strain curve as the adiabatic modulus which differs from the isothermal modulus. The
solid is then held at constant stress, and it exchanges heat with the environment. Thermal expansion
occurs, so the strain changes. Mechanical energy is dissipated in this cycle, since there is a non-zero
area enclosed by the load history. The loss tangent as a measure of damping refers to sinusoidal
loading which gives an elliptical stress-strain diagram, governed by the same general principles.

Thermoelastic damping has received renewed attention in view of the fact that it is operative
in stiff materials which are of use structurally. Since the figure of merit for many aspects of
structural damping is E tan δ, the thermoelastic mechanism is of interest even though the maximum
damping values from it are relatively small.  Thermoelastic damping in composite  materials arises
due to the inhomogeneity of the thermal and mechanical properties of such materials, leading to heat
flow between constituents, hence mechanical energy dissipation. The damping depends on the
specific phase geometry as well as the constituents involved. The reason is that damping depends
on inhomogeneity of dilatational stress, and on the nature of the boundary value problem under
consideration. Composites of the following structure have been analyzed for thermoelastic
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damping: one dimensional inclusions by Milligan and Kinra [5], laminates by Bishop and Kinra
[6], laminates with perfect and imperfect thermal interfaces by Bishop and Kinra [7], and
composites with particulate inclusions by Bishop and Kinra [8].

In this article we consider the effect upon damping of phase angles in the thermal
expansion, in view of the fact that similar phase angles in piezoelectric moduli can substantially
affect the mechanical damping due to piezoelectric coupling as demonstrated by Lakes [9].

II. MECHANICAL LOSS DUE TO THERMAL CURRENTS
A. Homogeneous case, with complex expansion coefficient

In this section we obtain the mechanical damping due to thermoelastic coupling. The
analysis parallels that of Zener [3], with the exception that the thermal expansion coefficient is
assumed to be a complex quantity,
α* = α'(1 + i tan δα), (3)
with δα as a phase angle, tan δα = Im{α*}/Re{α*} and α' as Re{α*}.
The relation between strain ε, stress σ, and temperature T is, in one dimension:
ε = JTσ + α*∆T, (4)
with JT as the isothermal compliance, so

∆T = 
1

α* (ε - JTσ). (5)

Thermal diffusion is governed by the following, with τ as the thermal diffusion time. This is
homogeneous thermal diffusion, from the specimen to its environment. It is assumed that the
exchange of heat with the environment is much faster than the thermal diffusion within the
specimen.
d∆T
dt  |diffusion = - 

∆T
τ  . (6)

In the frequency domain,

iω∆T = - 
∆T
τ  . (7)

Under adiabatic conditions, an increase in length of a specimen of material results in a decrease in
temperature, for α > 0.
d∆T
dt  |adiabatic = - γ 

dε
dt, (8)

with

γ = 
∂T
∂ε |adiabatic.

There may also be a phase angle in γ:
γ* = γ'(1 + i tan δγ),
The change in temperature in response to strain is a manifestation of the piezocaloric effect, which
is complementary to thermal expansion. In the frequency domain,
iω∆T =  - γ* iωε, (9)
Combining Eq. 6 and 8, since there are two independent sources for rate of temperature change,
d∆T
dt   = - 

∆T
τ   - γ*  

dε
dt . (10)

In the frequency domain,

iω∆T =  - 
∆T
τ    - γ* iωε, (11)

Eliminating ∆T with Eq. 5,

iω  1
α* (ε - JTσ) = -  

1
α*τ

 (ε - JTσ) - iωγ*ε. (12)

Calculating the ratio of stress to strain, the product γ*α* appears. It may be written as follows in
terms of the phase angles. The prime denotes the real part.
γ*α* = γ'(1 + i tan δγ)α'(1 + i tan δα) = γ'α'{1 + i(tan δγ+ tan δα) - tan δγtan δα}.
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For small phase angles,
γ*α* ≈ γ'α'{1 + i(tan δγ+ tan δα)} ≡ γ'α'{1 + i tan δαγ}.

E* = 
1
JT

 
1 + iωτα'γ'(1 + i tan δαγ) + ω2τ2α'γ'(1 + i tan δαγ) + ω2τ2

1 + ω2τ2  . (13)

But

tan δE = 
Im {E*}
Re {E*}

  ,  (14)

so the mechanical damping due to thermoelastic effects is

tan δE = 
ωτγα + ω2τ2α'γ'tan δαγ

1 + ω2τ2(1 + α'γ') - ωτα'γ'tan δαγ
 . (15)

This damping is shown for various values of  tan δαγ, in Fig. 2. Observe that in the absence
of a phase angle in thermal expansion (δα = 0), the damping due to thermoelasticity in this example
follows a Debye peak. Following Zener [3], the relaxation strength for the Debye peak is

∆ = αγ = 
α2T
CvJS

,

with the second form obtained via thermodynamic arguments based on the fact that an increment of
free energy is a perfect differential. The Debye form is obtained for the case of macroscopic
diffusion of heat. In cases of transverse vibration of reeds or cylinders, tan δ exhibits a series of
peaks of progressively smaller magnitude.

When δα ≠ 0, the high frequency damping for ω >> τ-1, is as follows.
tan δE ≈ γ'α'tan δαγ. (16)
This damping is constant, independent of frequency corresponding to the flat region to the right in
the curves in Fig. 2. In a continuum, this damping extends to arbitrarily high frequency, but if the
material has microstructure, an upper limit on frequency is to be expected as discussed in section
III.

The effect of a positive phase angle in thermal expansion increases the mechanical damping.
This behavior is in contrast to a positive phase angle in the piezoelectric 'd' tensor which reduces the
mechanical damping [9]. Indeed, prior theoretical treatments which neglected piezoelectric phase
angles overestimated observed mechanical damping in piezoelectric ceramics by more than a factor
of two.
B. Restrictions on the coefficients

In a passive material, the total damping tan δE must be nonnegative. However the thermal
expansion coefficient α can be positive or negative. Damping in the Debye peak is always positive
regardless of the sign of α since it is governed by α2. As for the phase δα, Eq. 16 shows that a
negative phase combined with a positive expansion coefficient, gives rise to a negative contribution
to the mechanical loss in the high frequency region. Consequently negative values of δα are
excluded in passive materials unless viscoelastic mechanisms other than thermoelasticity are
operative. As demonstrated in section III, negative values of δα can be generated in composite
materials, but only by having at least one phase which is already viscoelastic.
C. Loss due to thermal diffusion among inhomogeneities

Damping which results from thermal diffusion between the grains in a polycrystalline metal
was studied by Randall, et al. [4]. Experiments showed that this damping, though small in
magnitude, can account for virtually all the damping in the kHz region in some metals. Damping
due to thermoelastic effects associated with inclusions in a one dimension was presented by
Milligan and Kinra [5]. Predicted damping for one dimensional inclusions is proportional to
(α1/ρ1c1 - α2/ρ2c2)2 with α as a real thermal expansion, ρ as density, c as specific heat per unit
mass and the subscripts representing the phase. The peak is 1.2 to 1.9 decades wide at half
maximum depending on the ratio of thermal conductivities compared with 1.1 decades for a Debye
peak. The more realistic and more complicated case of spherical inclusions was examined by
Bishop and Kinra [8]). The damping peak in this case is broader than a Debye peak: about 1.7
decades wide at half maximum. Peak tan δE values for one-dimensional inclusions are, for SiC in



Lakes, 4

Mg, 0.0091, for SiC in Al, 0.0049; for spherical inclusions, for SiC in Mg, 0.0067, for SiC in Al,
0.0045.

Examination of the effect of a phase angle in α for such cases is considerably more difficult
than in the case considered above. One cannot apply the correspondence principle to a result for the
loss tangent. The loss is a real quantity, and substitution of a complex α in its expression does not
yield a physically meaningful quantity. Nevertheless, to the extent that the behavior is approximated
by a Debye peak, the effect of a complex thermal expansion coefficient is expected to be similar to
that obtained above.

III. MATERIALS WITH COMPLEX COEFFICIENTS OF THERMAL EXPANSION
A. Unidirectional composite
Complex thermal expansions are known to occur in polymeric materials [10,11]. We

demonstrate here that they can be obtained in a controlled fashion in composite materials, provided
that at least one phase is viscoelastic. Consider the longitudinal thermal expansion coefficient αL for
a unidirectional fibrous composite [12,13].

αL =  
1
EL

  (α1E1V1  + α2E2V2), (17)

in which α1 is the thermal expansion coefficient of the fibers, E1 is Young's modulus of the fibers,
and V1 is the volume fraction of the fibers; α2,E2,V2 are corresponding values for the matrix, with
V1+V2 = 1. EL is given by the Voigt relation or rule of mixtures,
EL = E1V1  + E2V2, (18)
Applying the dynamic elastic-viscoelastic correspondence principle, and assuming that each
component is viscoelastic but has a real thermal expansion coefficient,

αL
* =  

1
EL

*  (α1E1
*V1  + α2E2

*V2). (19)

We remark that this form can be readily obtained from the dynamic stress-strain-temperature
relation without any appeal to the correspondence principle.
Combining, and incorporating V2 = 1 - V1,

αL
* =  

α1 + α2 
E2

*

E1
* 

1-V1
V1

1 + 
E2

*

E1
* 

1-V1
V1

 . (20)

Materials with complex thermal expansions can therefore be prepared as composite materials in
which at least one constituent is viscoelastic. Fig. 3 shows the tangent of the phase δα of the thermal
expansion for such a composite. Tan δα can be made on the order of the mechanical damping tan
δE,2 of the matrix phase, for reasonably large volume fractions of fibers. The magnitude of the
thermal expansion in this example is rather small, since the expansion of the fibers is assumed to be
small. The phase δα can be negative in composites if the expansion in the stiff phase is greater than
that in the more compliant phase, as shown in the lower diagram in Fig. 3.

The above calculation of the complex thermal expansion is based on a continuum view of
the composite. Such a view is warrantable provided the frequency is sufficiently below the
characteristic frequency of thermal diffusion between the fiber and matrix phases of the composite.

B. Isotropic composite
The thermal expansion for a macroscopically isotropic composite is given as follows [14]:

α = α2 + 
α1 - α2

K1
-1 - K2

-1 {
1
K - 

1
K2

}, (21)

in which  K1 and K2 are the bulk moduli of the two phases and K is the bulk modulus of the
composite as a whole. Let K be given as the Hashin-Shtrickman upper bound, assuming a
Poisson's ratio of 0.3 for both phases, so K1 = 2.166 G1 with G1 as the shear modulus of the first
phase. The Hashin-Shtrickman upper bound is given by:
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G = G1 + 
V2

1
G2-G1

 + 
6(K1+2G1)V1
5(3K1+4G1)G1

 . (22)

Again, consider the stiffness of the matrix (phase 2) to be a complex quantity. The phase in the
thermal expansion is shown in Fig. 4, for constituent material properties as in Fig. 3. As in the case
of the unidirectional composite, tan δα can be made on the order of the mechanical damping tan δE,2
of the matrix phase, for reasonably large volume fractions of inclusions.

C. Prospects for high-loss materials. Structural hierarchy.
If a composite material is used to generate a phase δα for use in homogeneous thermoelastic

damping, there are two length scales, that of the composite structure and that of the specimen or
structural member itself. This is an example of structural hierarchy, in which there are multiple
nested length scales. Hierarchical materials are known to offer the potential for superior stiffness,
strength and toughness [15]. Complex composite structures need not arise by manufacturing. For
example spherulitic structures in polymers, and eutectic structures in metal alloys are
heterogeneous. In the context of viscoelastic composites, the high frequency plateau for the example
of homogeneous relaxation extends over frequencies at which a continuum view applies to any
composite structures used. At sufficiently high frequency, thermal flow between constituents gives
rise to an additional damping peak as considered for laminates [6] and for particulate composites
[8]. One may envisage hierarchical composites in which each lamina, fiber, or particle has its own
internal structure. In such a case a high frequency plateau is expected above the damping peak
associated with the largest structural elements.

Thermoelastic damping due to the phase δα in a unidirectional composite, was calculated in
the plateau region governed by Eq. 16, for several combinations of constituent materials. This
damping was compared with the composite damping due to the assumed viscoelasticity of the
matrix phase, following a correspondence principle analysis of the Voigt relation, Eq. 18, for elastic
materials:
Ec

* = E1
*V1 + E2

*V2.
Taking the ratio of real and imaginary parts, the mechanical loss tangent of the composite due to the
viscoelasticity of the constituent phases is given by:

tan δc =  
V1  tan δ1+ V2 

E2
'

E1
' tan δ2

V1 + 
E2

'

E1
' V2

 . (23)

The thermoelastic enhancement of the damping, defined as the ratio ξ of the plateau
damping of Eq. 16 to the damping due to the viscoelasticity of the matrix phase, Eq. 23, was
calculated.

ξ = 
∆ tan δαγ

tan δc
  . (24)

This enhancement increases with E1/E2, with V1, with α2/α1, and with the relaxation strength. For
composites made of commonly known materials, the enhancement is small, less than 20% for all
cases considered. Several examples, calculated using thermal data reported by Milligan and Kinra
[5] are given in Fig. 5. Observe that if the matrix itself has a phase angle in its thermal expansion
(to be distinguished from the phase angle of the composite) then there is additional mechanical
damping.

Applications of thermoelastic damping all suffer from the drawback that the relaxation
strength, hence the maximum tan δ, is relatively small for known materials considered thus far by
investigators of thermoelastic damping. It is possible to obtain very high values of thermal
expansion in certain cellular composites [16,17]. Such materials are compliant in view of the
bending deformation which occurs in them, hence they will also have a small relaxation strength.
Moreover such compliant materials cannot be expected to exhibit a large figure of merit  E tan δ. As
for a broader view of materials, Ashby [18] has compiled mechanical and thermal properties of
many engineering materials. Ashby plots α vs E and shows contours of the product αE which
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governs thermal stress in a constrained system. In the context of thermoelastic relaxation, the figure
of merit is the relaxation strength, which contains α2E. By drawing contours of α2E, we observe
that the figure of merit for metals such as magnesium, zinc, aluminum, steel and copper is similar to
that of polymers such as nylon and polystyrene. Ceramics and porous materials are less promising
in this regard. The specific heat of a wide range of engineering materials, expressed as ρC, does not
deviate much from 3 x 106 J/m3K, so it seems unlikely to enhance the relaxation strength by control
of that variable.

Future development of high-damping structural materials based on thermoelasticity will be
facilitated by a search for new materials, possibly alloys, which exhibit a large thermoelastic
relaxation strength. If such materials are to be used in composites they need not be as strong as
common engineering materials. This study demonstrates that thermoelastic phase angles can be
beneficial. If needed, they can be generated in composite materials.

IV. CONCLUSIONS
A phase angle in the thermal expansion coefficient α gives rise to mechanical damping over

a broad range of frequency. This damping is in addition to the Debye peak expected for
homogeneous thermoelastic relaxation. A phase angle in α is known to exist in certain polymers. A
phase angle in α can be obtained in a controlled fashion in composite materials, provided that at
least one phase is viscoelastic. However the resulting enhancement of the overall damping of the
composite is modest, unless new materials with very high relaxation strength can be found.
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1 Cyclic history of stress σ vs. strain ε showing energy dissipated due to thermoelastic

damping. Conversion of mechanical energy into thermal energy via the thermal expansion
and piezocaloric effects. Energy densities W are shown as shaded areas. Material is loaded
slowly at constant temperature, then unloaded rapidly at constant entropy (adiabatically),
which causes a temperature change, finally allowed to thermally equilibrate at zero stress.
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3 Theoretical tangent of the phase angle δα in the thermal expansion of a unidirectional
fibrous composite in terms of the mechanical damping tan δE of the matrix phase, and
thermal expansion αm of the matrix. It is assumed that the fibers are purely elastic and are
45 times stiffer than the matrix and that they have a longitudinal thermal expansion αf = 4.5
x 10-8 /°C. These figures are representative of graphite fibers in an epoxy matrix. The
volume fraction of fibers is assumed to be 0.5.
Top diagram: range of αm 0 to 10-4 /°C. Arrow: a typical epoxy, αm = 6 x 10-5 /°C
Bottom diagram: range of αm 0 to 10-7 /°C, showing the possibility of a negative phase if
the matrix expansion is very small.
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4 Theoretical tangent of the phase angle δα in the thermal expansion of an isotropic composite
in terms of the mechanical damping tan δE of the matrix phase, and thermal expansion αm
of the matrix. Hashin-Shtrickman upper bound model. Assumed constituent properties are
the same as those for Fig. 3. Poisson's ratio is assumed to be 0.3 for both phases.



Lakes, 10

  

α
α m

f

1

Vf 0

  

  

Damping
enhancement

Vf

α
α

m

f

1

0

Zn-PE

  

Damping
enhancement

Vf α
α m

f

1

0

α
α m

f

1

0
Vf

Sn-SiC
0

5 Theoretical thermoelastic damping enhancement at high frequency for composites. Matrix
damping is assumed to be 0.1 for all cases. Matrix αm shown by arrow.
Top left, zinc-polyethylene; damping of zinc assumed to be 10-4 based on pinned
dislocations. Top right: tan δα = 0.1 for the polymer. Bottom left, tin-silicon carbide.
Damping of silicon carbide assumed to be zero. Bottom right, tan δα = 0.1 for the tin.


