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1 Introduction 

Negative structural stiffness entails a reversal of the usual relationship between force and displacement in 
deformed objects: the applied force is in the opposite direction to the displacement rather than in the 
same direction. Negative structural stiffness can occur in objects with pre-strain including objects in the 
post-buckling regime [1]. Such objects contain stored energy and are unstable unless they are con-
strained. Negative stiffness is of interest in part because one can obtain extreme material damping in a 
system with elements of positive and negative stiffness. Such effects were observed experimentally [2] in 
a lumped system containing a post-buckled tube. 
 As for material stiffness, i.e. modulus, the condition of positive definite strain energy entails, for iso-
tropic solids, G > 0 and –1 < ν  < 0.5 with ν as Poisson’s ratio (see e.g. [3]). One can express this as 
G > 0 and K > 0 with K as bulk modulus. Positive definite strain energy implies stability for an elastic 
body under stress boundary conditions, including zero stress which means no constraint. A fully  
constrained object under displacement boundary conditions has a unique solution [4] and is incremen-
tally stable [5] if the elastic moduli are strongly elliptic: for an isotropic solid, the criteria are G > 0 and  
–∞ < ν < 0.5 or 1 < ν < ∞. Strong ellipticity requires the tensorial modulus C1111, which governs the 
speed of plane compressional waves or the stiffness under compression with lateral constraint, to be 
positive. The bulk modulus can, however, be negative: –4G/3 < K < ∞. 
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Fig. 1 (online colour at: www.pss-b.com) Map of bulk modulus K vs. shear modulus G, showing  

regions of negative Poisson’s ratio ν and negative moduli for an isotropic solid. 

 

 Negative stiffness is distinct from negative Poisson’s ratio. Poisson’s ratio ν, is defined as the negative 

lateral strain of a stretched or compressed body divided by its longitudinal strain; it is dimensionless. 

Most materials stretched with longitudinal force elongate longitudinally but also contract laterally, hence 

have a positive Poisson’s ratio. For most solids Poisson’s ratio ranges between 0.25 and 0.33; the range 

for stability of isotropic solids is from –1 to 0.5; within that range all moduli are positive. Recently 

Lakes and co-workers have conceptualized, fabricated and studied negative Poisson’s ratio foams [6, 7] 

with ν  as small as –0.8. These materials become fatter in cross section when they are stretched and they 

are stable. Wojciechowski [8–10] analyzed several micro-structures predicted to exhibit negative Pois-

son’s ratio. Milton [11] showed that negative Poisson’s ratio can be achieved in hierarchical laminates, 

and that one can approach the isotropic lower limit –1 by proper choice of constituent moduli. Negative 

Poisson’s ratio materials have been called anti-rubber by Glieck [12], dilational by Milton [11], and 

auxetic by Evans and co-workers [13, 14]. Negative stiffness, by contrast, refers to a situation in which a 

reaction force occurs in the same direction as imposed deformation. The relationship between the moduli 

and the Poisson’s ratio, allowing negative values, is shown in Fig. 1. The upper right quadrant of this 

map was discussed by Milton to elucidate the role of negative Poisson’s ratio in relation to the moduli. 

 Negative modulus is of interest in part because one can obtain extreme material damping [2, 15] in a 

composite with constituents of positive and negative modulus. In such a composite, the negative stiffness 

inclusions are under partial constraint from the surrounding matrix. The elastic and viscoelastic behavior 

of composites having a negative stiffness phase has been illustrated for composites with particulate 

ferroelastic inclusions [16]. Specifically, a composite with a tin matrix and a small concentration (1%) of 

vanadium dioxide particle inclusions was prepared. Vanadium dioxide was chosen since it exhibits a 

ferroelastic phase transformation at a convenient temperature 67 °C. This composite exhibited a large 
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peak in mechanical damping and an anomaly in modulus in the vicinity of the transformation tempera-

ture. Composites with inclusions of negative stiffness may be called exterlibral or libral since they are on 

the boundary of balance [16]. Lakes and Drugan [17] studied spherically symmetric unit cells and 

showed selected solutions to be well behaved for inclusions of negative bulk modulus. Partial constraint 

is also of interest in the context of experimental study of materials in the vicinity of phase transforma-

tions. Negative bulk modulus [18] is possible in a pre-strained lattice and in several crystalline materials. 

Analysis of an Ising model [19] of a lattice predicts K < 0 near the critical temperature. Softening [20] of 

the bulk modulus (analogous to softening of the shear modulus in ferroelastics) has been observed in 

YbInCu4 crystals at a temperature of 67 K. Composites with spherical inclusions of negative bulk moduli 

exhibit anomalies in the composite bulk modulus and Young’s modulus (and in the corresponding me-

chanical damping). A partially constrained bar with negative bulk modulus is stable with respect to ele-

mentary deformation modes [18]. However, there are an infinite number of modes in a continuum. The 

stability of negative stiffness elastic media under partial constraint is not well understood. It is the pur-

pose of the present work to explore the stability of isotropic elastic cuboids and cylinders under partial 

constraint of some surfaces. 

2 Formulation 

2.1 Governing equations for elastic solid 

Consider an isotropic homogeneous elastic solid. The elastic body occupies a three dimensional region V  

in the Cartesian coordinate system ( , , )x y z , and it has a regular (bounding and piecewise smooth) sur-

face V∂ . The motion of elastic body can be described by the displacements which dependent on the 

space coordinates ( , , )x y z  and the time t : 

 ( , , , ) , ( , , , ) , ( , , , ) .
x x y y z z

u u x y z t u u x y z t u u x y z t= = =  (2.1) 

 On the basis of classical theory of elasticity, the infinitesimal strains are given by 

 

, , , ,

, .

y yx z x

x y z xy

yz x z

yz zx

u uu u u

x y z x y

uu u u

y z z x

ε ε ε γ

γ γ

∂ ∂∂ ∂ ∂Ê ˆ= = = = +Á ˜Ë ¯∂ ∂ ∂ ∂ ∂
∂∂ ∂ ∂Ê ˆ Ê ˆ= + = +Á ˜ Ë ¯Ë ¯∂ ∂ ∂ ∂

 (2.2) 

 The rotation is given by 

 
1 1 1

, , .
2 2 2

y yz x z x

x y z

u uu u u u

y z z x x y
ω ω ω

∂ ∂∂ ∂ ∂ ∂Ê ˆ Ê ˆÊ ˆ= - = - = -Á ˜ Á ˜Ë ¯Ë ¯ Ë ¯∂ ∂ ∂ ∂ ∂ ∂
 (2.3) 

 The stresses satisfy the linear isotropic elastic Hooke’s law: 

 
2 , 2 , 2 ,

, , ,

x x y y z z

xy xy yz yz xz xz

e G e G e G

G G G

σ λ ε σ λ ε σ λ ε

τ γ τ γ τ γ

= + = + = +

= = =

 (2.4) 

where the bulk strain 
x y z

e ε ε ε= + + . The Lame and shear moduli λ  and G are related to Young’s 

modulus E  and Poisson’s ratio ν  by /[(1 ) (1 2 )]Eλ ν ν ν= + - , /[2(1 )]G E ν= + , respectively. 

 The displacement equation of motion ([21], p. 278) is 

 
2 2 2 2

2 2 2 2
( , , ) ( ) , , ( , , ) .

u v w
G u v w G u v w

x y z x y z x y z t
λ ρ

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂Ê ˆ Ê ˆ Ê ˆ+ + + + + + =Á ˜ Á ˜Á ˜ Ë ¯ Ë ¯Ë ¯∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
 (2.5) 
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 Suppose that the body forces are absent and the works of surface forces to displacements vanish at 

every point on the entire boundary of the elastic body, i.e. we have the boundary condition: 

 0ij j in uσ =  ( , , , )i j x y z=  on V∂  , (2.6) 

where the direction cosines ( , , ) (cos ( , ), cos ( , ), cos ( , ))
x y z

n n n x y z= n n n  and n is the normal unit vector 

to the surface V∂ . 

2.2 Dynamic stability and real frequency 

In view of the intuitive notion of stability, an equilibrium configuration, or an equilibrium state, is stable, 

which means that the configuration will have only a small departure from its undisturbed configuration 

after any small disturbance. In the usual case, such a small disturbance may either induce small oscilla-

tion about the undisturbed equilibrium configuration or the perturbation becomes damped out. The well-

known Liapounov’s theory of dynamic stability provides fundamental methods and criteria to examine 

stability of an equilibrium state for discrete systems with a finite number of degrees of freedom. 

Liapounov’s direct method in stability theory has been developed by Movchan to be more appropriate 

for application to continuous systems. Subsequently, Leipholz introduced Movchan’s stability theorem 

for elastic body under conservative loads, and reached a conclusion that the stability of the equilibrium 

position is ensured by real and positive eigenvalue 2
ω of the problem [22]. In the case that the volume 

force and the surface load acting on the elastic body vanish, the eigenvalue 2
ω  is namely the square of 

the natural frequency of the elastic body because small oscillatory motion superimposed on an initial 

natural state is free vibration. Leipholz’s work is of considerable importance in theoretical analysis of 

stability as he established a connection between dynamic stability of natural state and natural frequency 

of elastic body. According to the aforementioned conclusion, if an elastic body has real natural frequency 

for all modes of free vibration then its natural state is stable. Therefore, we investigate stability condi-

tions of the natural state for elastic materials, especially for elastic materials with negative stiffness. In 

this way we enable the determination of conditions under which the natural state is as a guide for ex-

periments. 

2.3 Rayleigh’s Quotient 

To investigate stability of an elastic body in the natural state, we consider first free vibration which is 

regarded as a small motion superimposed on an initial natural state of the elastic body. The displace-

ments are assumed as 

 ( , , ) e , ( , , ) e , ( , , ) ei t i t i t

x y zu u x y z u v x y z u w x y z
ω ω ω

= = =  , (2.7) 

where 1i = -  and ω  is the resonant (natural) frequency. The displacement mode (2.7) is a normal mode 

in which all particles of the elastic body are moving synchronously, that is, passing through their rest 

positions simultaneously. 

 In the initial natural state, the displacements, stresses and the strains of an elastic body all vanish. The 

conservation of total energy requires that the sum of the kinetic energy and the potential energy become 

zero: 

 

22 2

d 0
yx z

V

uu u
W V

t t t
ρ

Ï È ˘ ¸∂∂ ∂Ô ÔÊ ˆÊ ˆ Ê ˆ+ + + =Ì ˝Í ˙Á ˜Ë ¯ Ë ¯Ë ¯∂ ∂ ∂Ô ÔÎ ˚Ó ˛
Ú  , (2.8) 

where the volume mass density of material 0ρ >  and the strain energy function, i.e. the strain energy per 

unit volume, is given by ([21], p. 104) 

 2 2 2 21

2
[( 2 ) ( ) ( 4 4 4 )] .

x y z xy yz zx x y y z z x
W G Gλ ε ε ε γ γ γ ε ε ε ε ε ε= + + + + + + - - -  (2.9) 
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It can rewritten as 

 

2 2 2 21

6

2 2 2

{(3 2 ) ( ) 3 ( )

2 [( ) ( ) ( ) ]} .

x y z xy yz zx

x y y z z x

W G G

G

λ ε ε ε γ γ γ

ε ε ε ε ε ε

= + + + + + +

+ - + - + -

  

Substituting (2.7) and (2.10) into the equation of energy conservation (2.8), we obtain the Rayleigh’s 

quotient: 

 

0

2

0
2 2 2

d

( , , )
( ) d

V

V

U V

R u v w

u v w V

ω

ρ

= =

+ +

Ú

Ú
 , (2.11) 

where the function 

 

2 2 22

0

2 2 2

1
(3 2 ) 3

6

2 .

u v w v u u w v w
U G G

x y z x y z x z y

u v v w w u
G

x y y z z x

λ
Ï È ˘∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂Ô Ê ˆ Ê ˆ Ê ˆÊ ˆ= + + + + + + + + +Ì Í ˙Á ˜ Á ˜ Á ˜Ë ¯Ë ¯ Ë ¯ Ë ¯∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂Ô Î ˚Ó

È ˘¸∂ ∂ ∂ ∂ ∂ ∂ ÔÊ ˆ Ê ˆ Ê ˆ+ - + - + - ˝Í ˙Á ˜ Á ˜ Ë ¯Ë ¯ Ë ¯∂ ∂ ∂ ∂ ∂ ∂ ÔÎ ˚˛

  

 In variational methods of elastic vibration, Rayleigh’s quotient plays an important role, for instance, 

Rayleigh’s quotient provides an upper bound for the lowest eigenvalue: 2

min
Rω £  [23]. In view of meth-

ods for energy, Rayleigh’s quotient of an elastic body may contain all information of free vibration. It is 

more difficult to show stability than instability since there are an infinite number of modes. However, 

Rayleigh’s quotient is an expression for the square of natural frequency 2
ω  corresponding to all possible 

modes of free vibration; therefore it is given the same symbol. The meaning is to be understood by con-

text. Moreover, the stability for elastic body is equivalent to that the Rayleigh’s quotient having a posi-

tive lower bound [24]. Thus, Rayleigh’s quotient could be a preferred approach to investigate stability of 

an elastic body. In general, the denominator of Rayleigh’s quotient is always positive because it corre-

sponds to the positive kinetic energy. In the case of conservative loads, the numerator of Rayleigh’s 

quotient corresponds to the total potential energy, that is, the strain energy minus the work of external 

loads. Whether the numerator is positive or not is dependent from the material moduli, the shape of 

boundary and the boundary condition of the elastic body. 

3 Stability under conditions of positive definiteness and strong ellipticity: 

review and analysis 

3.1 Stability under the positive definiteness condition 

From (2.10), the positive definiteness condition of the strain energy function W  is 

 0 , 3 2 0 .G Gλ> + >  (3.1) 

 Obviously, this condition guarantees that the numerator of the Rayleigh’s quotient (2.11) is positive 

since the function 
0

U  is positive definite. This implies that the square of natural frequencies for all modes 

of free vibration is positive, that is, the natural frequencies are real. It follows the well-known result: an 

elastic body with arbitrary regular shape made of positive definite material is always stable, whether the 

surface is constrained or not. Also the positive definiteness condition (3.1) requires all moduli to be posi-

tive. It excludes any possibility of negative modulus. In the following analysis, surface constraint is im-

posed and the stability of a solid of negative modulus under constraint is studied. 

(2.10) 

(2.12)
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3.2 Stability of an elastic body fully constrained on the surface 

Now we rewrite the strain energy function (2.9) as following Kelvin’s form ([21], p. 168): 

 
{ 2 2 2 21
( 2 ) ( ) 4 ( )

2

4 .

x y z x y z

y y y yz z z x x z x x

W G G

u u u uu u u u u u u u
G

y z y z x z x z x y x y

λ ε ε ε ω ω ω= + + + + + +

∂ ∂ ∂ ∂∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ÈÊ ˆ Ê ˆ ˘¸Ê ˆ+ - + - + - ˝Á ˜ Á ˜Í ˙Ë ¯Ë ¯ Ë ¯∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂Î ˚˛

  

Substituting (2.7) and (3.2) into the Eq. (2.8), we can obtain the another expression of the Rayleigh’s 

quotient: 

 

1 1

2

1
2 2 2

d

( , , )
( ) d

V

V

U V I

R u v w

u v w V

ω

ρ

+

= =

+ +

Ú

Ú
 , (3.3) 

where the function 

 

2 2 22

1

1
( 2 )

2

u v w w v u w v u
U G G

x y z y z z x x y
λ

Ï È ˘¸∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂Ô ÔÊ ˆ Ê ˆ Ê ˆÊ ˆ= + + + + - + - + -Ì ˝Í ˙Á ˜ Á ˜ Á ˜Ë ¯Ë ¯ Ë ¯ Ë ¯∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂Ô ÔÎ ˚Ó ˛
 (3.4) 

and the volume integral 

 
1

4 d .

V

w v v w u w w u v u u v
I G V

y z y z z x z x x y x y

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ÈÊ ˆ Ê ˆ ˘Ê ˆ= - + - + -Á ˜ Á ˜Í ˙Ë ¯Ë ¯ Ë ¯∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂Î ˚Ú  (3.5) 

Using integration by parts, we can transform the volume integral (3.5) in V  into the closed surface inte-

gral on V∂ as follows (to see A1. in the Appendix): 

 

1
2

d .

x y

V

z

u u v w v v w u
I G n w v u n u w v

z y y z x z z x

w w u v
n v u w S

y x x y

�
∂

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂Ï ÈÊ ˆ Ê ˆ ˘ ÈÊ ˆ Ê ˆ ˘= + - + + + - +Ì Á ˜ Á ˜Í ˙ Í ˙Ë ¯ Ë ¯Ë ¯ Ë ¯∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂Î ˚Î ˚Ó

∂ ∂ ∂ ∂ÈÊ ˆ Ê ˆ ˘¸+ + - + ˝Á ˜ Á ˜Í ˙Ë ¯ Ë ¯∂ ∂ ∂ ∂Î ˚˛

Ú
  

 Obviously, for an elastic body with arbitrary regular shape if the material obeys the condition of 

strong ellipticity: 

 0 , 2 0G Gλ> + >  , (3.7) 

then we know from (3.4) that the function 
1

U  is non-negative. Indeed, a positive semi-definite form in the 

displacement gradients ([25], p. 122) is: 

 
1

0 .U ≥  (3.8) 

Therefore, if the surface integral 
1

0I = , then the Rayleigh’s quotient from (3.3) is non-negative. In  

Eq. (3.8), the equality holds only if the vector of displacement ( , , )u v w=u  has no dilatation and no rota-

tion: 0—◊ =u  and 0—¥ =u , which implies that the vector of displacement is harmonic [26]: 

 2
0 .— =u  (3.9) 

(3.2) 

(3.6)
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This equation has two situations of solution for the assumed homogenous boundary condition: either 

trivial solution 0∫u  in V or non-trivial solution 0πu  in V . The first situation guarantees that the 

Rayleigh’s quotient is positive definite, so elastic body is stable. However, the latter leads to the possibil-

ity that Rayleigh’s quotient (all frequency) becomes zero for some non-trivial solutions of displacement. 

In the latter situation, elastic body has neutral stability. Therefore, we obtain a result: 

Conclusion I An elastic body with arbitrary regular shape which material moduli satisfy the condition 

of strong ellipticity (3.7) is either stable or neutrally stable if its boundary condition makes the surface 

integral (3.6) 
1

0I = . Moreover, under the assumed homogenous boundary condition, if Eq. (3.9) has a 

unique solution (the trivial solution 0∫u ), then the elastic body is stable; if the Eq. (3.9) has a non-

trivial solution, then the elastic body is neutrally stable. 

 It should be pointed that the surface integral (3.6) 
1

0I =  in the Conclusion I is different from  

the Chen’s integral boundary condition ([27], formula (13); [28], formula (A.1)). Chen’s result indicates  

that for all fourth order skew tensor  Τ
= -W W  if the displacement vector u satisfies  the integral  con- 

dition:  : d 0

V

S

∂

ƒ—ƒ ƒ =ÚW n u u  (where the symbol  ‘ƒ’  and ‘:’  denote tensor  product  and double 

scalar product, respectively), then an elastic body with arbitrary regular shape which material moduli 

satisfy the condition of strong ellipticity is stable. As compared with Chen’s integral condition, the inte-

gral condition 
1

0I =  in Conclusion I is more direct. However, in Conclusion I it requires the additional 

condition that the harmonic Eq. (3.9) has only a trivial solution 0∫u  under the assumed homogeneous 

boundary condition. In some boundary conditions, this additional condition may hold. As a specific case 

of Conclusion I, when the boundary of the surface V∂ of an elastic body is fully constrained, i.e. the dis-

placement boundary condition 0u v w= = =  on V∂ . In this case Eq. (3.9) has a unique trivial solution 

because of the uniqueness of the Dirichlet problem, and from (3.6) the surface integral 
1

0I = . Thus we 

reach another well-known result: an elastic body fully constrained (fixed) on the surface with arbitrary 

regular shape is stable if its material is strongly elliptic. It is worthwhile to note that the strong ellipticity 

condition (3.7) is weaker than the positive definiteness condition (3.1). The positive definiteness condi-

tion limits all moduli to be only positive, however the strong ellipticity condition allows some moduli to 

become negative. 

3.3 Condition of strong ellipticity and negative elastic moduli 

Strong ellipticity allows some moduli to be negative. Negative stiffness is not excluded by any physical 

law [17]. Examples of negative stiffness and the use of negative stiffness constituents are discussed in 

the Introduction. 

 In the view of physics, the strong ellipticity condition (3.7) is consistent with some restrictions upon 

materials. First, for isotropic elastic materials, the stress and strain share the same principal axes and the 

greater principal stress should occur in the direction of the greater principal strain. The two restrictions 

require that the empirical inequality and the Baker–Ericksen inequality in finite elasticity hold, respec-

tively. In case of linear elasticity the two inequalities reduce to one of the conditions of strong ellipticity: 

0G >  [29–31]. Also, another restriction on materials is that tension produces extension when the lateral 

faces are fixed; this requires that the tension-extension inequality in finite elasticity must be satisfied. In 

linear elasticity this inequality corresponds to another condition of strong ellipticity: 2 0Gλ + >  [29, 31]. 

Moreover, the strong ellipticity condition (3.7) is a necessary and sufficient condition to ensure that the 

speeds of all plane waves in elastic media filling three-dimensional space are positive. Moreover, for the 

displacement boundary value problem of linear elastostatics in bounded regions, the strong ellipticity 

condition (3.7) guarantees the uniqueness of solution [26]. 

 For isotropic elastic materials, the strong ellipticity condition (3.7) shows that the shear modulus G  

and tensorial compression modulus 
1111

2C Gλ= +  both are positive. If either of the moduli is negative, 

the material will undergo a deformation from its assumed initial state even though no forces are applied 

to it [32]. If strong ellipticity is violated, the material may exhibit an instability associated with the for-
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mation of bands of heterogeneous deformation [33]. Bands associated with negative C1111 were observed 

[34] in open cell foams under heavy compression. Bands which may be interpreted in terms of negative 

G are known in ferroelastic materials [35] below a critical phase transformation temperature. Based on 

these fundamental considerations, we investigate stability in the range 0G >  and 2 0Gλ + > , i.e. strong 

ellipticity condition. 

 There exist three regions (Fig. 1) in the plane of elastic modulus G and K  in which the strong elliptic-

ity condition (3.7) holds: 

(i) Region I: 0 , 0G K> >  ( 0, 1 1/ 2E ν> - < < ) . 

In this region, the material is positive definite and all elastic moduli are positive. For all boundary condi-

tions, the material in this region is always stable. Region I corresponds to positive definite energy and is 

unquestionably stable. Negative Poisson’s ratio, though counter-intuitive and not observed in common 

isotropic materials, is consistent with stability within the above range. Stability of elastic objects corre-

sponding to the other regions is examined in the following. 

(ii) Region II: 0 , / 3 0G G K> - < <  ( 0, 1E ν< -• < < - ) . 

In this region both the Young’s modulus E  and the bulk modulus K  are negative. Moreover, we have the 

condition: 

 0 , 0G Gλ> + >  . (3.10) 

(iii) Region III: 0 , 4 /3 /3G G K G> - < < -  ( 0,1E ν> < < +•) . 

In this region negative bulk modulus K  occurs, but Young’s modulus E  is positive. 

 Hence the condition of strong ellipticity allows the elastic material to have the negative bulk modulus 

K and the negative Young’s modulus E . The stability of materials condition is not yet well understood in 

regions II and III. 

3.4 Stability in partial constraint: Ryzhak’s result 

As discussed above, an elastic body with negative modulus for which all boundaries are fully constrained 

(fixed) is stable in the condition of strong ellipticity. By contrast, if its boundaries are fully stress-free, it 

is usually unstable even if the condition of strong ellipticity holds. The fully fixed and fully stress-free 

are the two extreme cases of boundary conditions. Stability conditions for other boundary condition 

cases between the two extreme cases are of interest and are studied in the present work. 

 By means of Fourier expansion procedure, Ryzhak [28] found a modified result: An elastic cuboid 

(rectangular parallelepiped) satisfying the condition of strong ellipticity (3.7) is stable if each of its  

surfaces has one of three types of boundary condition: (i) zero displacement (fixed); (ii) tangent direc-

tions to boundary are fixed but the normal direction is stress-free; (iii) normal is fixed but tangent stress-

free. 

 The Ryzhak result implies that the full constraint of surface displacement is not necessary for a 

strongly elliptic material to be stable. In other words, it reveals a possibility of stability under partial 

constraint of the surface. In the following analysis, we will deal with the questions: Does there exist a 

stable or neutrally stable elastic body with negative bulk modulus (in the region II or III) if some portion 

of its boundary has not any constraint (stress-free)? A general answer of such question seems rather 

difficult. In the next two sections, we will give some positive answers to this question for elastic bodies 

with specific geometric shapes. 
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4 Stability of elastic cuboids with negative modulus 

4.1 Simplification of the integral 
1
I  

Consider an elastic cuboid with negative modulus and which obeys the strong ellipticity condition (3.7). 

The lengths of the cuboid are a, b, c in three dimensions, respectively. The six surfaces of the cuboid are 

denoted as: 

 
21, 3,4

5,6

{ 0, , 0 , 0 } , {0 , 0, , 0 } ,

{0 , 0 , 0, }.

x a y b z c x a y b z c

x a y b z c

Ω Ω

Ω

= = £ £ £ £ = £ £ = £ £

= £ £ £ £ =
 (4.1) 

 On each surface of the cuboid, only the normal cosine is not zero and the two tangent cosines become 

zero: 

 
1,2

1
x

n
Ω

∓=  ,  
3,4

1
y

n
Ω

∓=  ,  
5,6

1
z

n
Ω

∓=  (the others are zero) . (4.2) 

 In this case, the closed surface integral (3.6) can be rewritten by 

 

1

0 0

0 0

0 0

0

0

2 d d

0

d d

d d .

c

c

a b

b x a

x

a y b

y

z

z

a

u u v w
I G v w u y z

y z y z

v v w u
w u v z x

z x z x

w w u v
u v w x y

x y x y

=

=

=

=

=

=

Ï ∂ ∂ ∂ ∂Ô ÈÊ ˆ Ê ˆ ˘= + - +Ì Á ˜ Á ˜Í ˙Ë ¯ Ë ¯∂ ∂ ∂ ∂Î ˚ÔÓ

∂ ∂ ∂ ∂ÈÊ ˆ Ê ˆ ˘+ + - +Í ˙Ë ¯ Ë ¯∂ ∂ ∂ ∂Î ˚

¸∂ ∂ ∂ ∂ ÔÈÊ ˆ Ê ˆ ˘+ + - + ˝Á ˜ Á ˜Í ˙Ë ¯ Ë ¯∂ ∂ ∂ ∂Î ˚ Ǫ̂

Ú Ú

Ú Ú

Ú Ú

 

 Then, using integration by parts, we can reduce the integral 
1
I  into the following form: 

1

0 0 0 0 0 000 0

2 2 d d 2 d d 2 d d

b c c a acx a z cy b

yx z

v w w u u v
I G u y z v z x w x y J

y z z z x y

= =
=

=
= =

Ï ¸∂ ∂ ∂ ∂ ∂ ∂Ô ÔÊ ˆ Ê ˆÊ ˆ= - + - + - + +Ì ˝Á ˜ Á ˜Ë ¯Ë ¯ Ë ¯∂ ∂ ∂ ∂ ∂ ∂Ô ÔÓ ˛
Ú Ú Ú Ú Ú Ú  

 (4.3) 

where the line integration is 

 
000

( d d ) ( d d ) .( d d )
yz zx xy

x a z cy b

zyx

R R R

J u v z w y w u y v xv w x u z
� � �

= ==

===

∂ ∂ ∂

= + + + ++Ú Ú Ú  (4.4) 

 In the expression (4.4) the closed curves 
xy

R∂ , 
yz

R∂  and 
zx

R∂  are respectively the edges of the three 

rectangular regions which are denoted by 

 0 , 0{ }
xy

R x a y b£ £ £ £= ,  0 , 0{ }
yz

R y b z c£ £ £ £=  and 0 , 0{ }
zx

R z c x a£ £ £ £=  

and located on the three different coordinate planes. Also all line integrals in (4.4) are along the counter-

clockwise direction. Calculating these line integrals, we obtain the identity (see Appendix 2): 

 0J ∫  . (4.5) 
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4.2 Types of boundary conditions considered 

On the premise of the boundary condition (2.6), the types of boundary sub-regions are classified into 

four groups. In a general case, each surface of the cuboid is an aggregation of the four types of sub-

regions, namely 

 ( ) ( ) ( ) ( ) ( 1, 2, , 6) .i i i i

i u u u
B B B B i

σ σ σ
Ω

�

= + + + =   (4.6) 

 The four independent types of sub-boundary regions on the i-th surface ( 1, 2, , 6)
i
iΩ

�

=  are defined 

as follows: 

Type I: The fixed boundary sub-region ( )i

u
B . All components of displacement vanish in ( )i

u
B : 

 0u v w= = =  in ( )
.

i

u
B   (4.7) 

Type II: The mixed boundary sub-region ( )

u

i
B

σ
. The normal direction to boundary sub-region ( )i

u
B

σ
 is fixed 

and the two tangent directions are stress-free. This type of boundary condition, for example, on the sur-

face 
1

Ω  can be written as 

 
0

00

0, 0
x

xx

v w w u
u

z y x z
=

=
=

∂ ∂ ∂ ∂Ê ˆ Ê ˆ= + = + =Á ˜ Ë ¯Ë ¯∂ ∂ ∂ ∂
 in ( )1

u
B

σ
 . (4.8) 

Type III: The mixed boundary sub-region 
u

B
σ

. The two tangent directions to boundary 
u

B
σ

 are fixed and 

the normal direction is stress-free. This type of boundary condition, for example, on the surface 
1

Ω  can 

be written by 

 
0 0

0

( 2 ) 0 , 0
x x

x

u v w
G v w

x y z
λ λ

= =

=

∂ ∂ ∂È Ê ˆ ˘+ + + = = =Á ˜Í ˙Ë ¯∂ ∂ ∂Î ˚
 in (1)

u
B

σ
 . (4.9) 

Type IV: The stress-free boundary sub-region B
σ

. All stresses are free in B
σ

. This type of boundary 

condition, for example, on the surface 
1

Ω  can be written as 

 
00 0

( 2 ) 0 , 0 , 0
xx x

u v w v w w u
G

x y z z y x z
λ λ

=
= =

∂ ∂ ∂ ∂ ∂ ∂ ∂È Ê ˆ ˘ Ê ˆ Ê ˆ+ + + = + = + =Á ˜ Á ˜Í ˙ Ë ¯Ë ¯ Ë ¯∂ ∂ ∂ ∂ ∂ ∂ ∂Î ˚
 in   ( )i

B
σ

 .  

(4.10) 

4.3 An extension of Ryzhak’s result 

Suppose that each surface of the cuboid is an aggregation of the type I, II and III boundary sub-regions, 

namely 

 ( ) ( ) ( ) ( 1, 2, , 6) ,i i i

i u u u
B B B i

σ σ
Ω

�

= + + =  (4.11) 

where boundary sub-regions ( )i

u
B , ( )i

u
B

σ
 and ( )i

u
B
σ

 have at least one non-empty segment. 

 Taking into account that the partial derivative with respective to variable y  or z  can be exchanged in 

order with evaluation at 0x = , that is 

 
0 0 0

00 0

0
0

( ) , ( ) , ( ) , ( )
x x x

xx x

x

x

u u v w
u u v w

y y z z y y z z
= = =

=
= =

=

=

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
= = = =

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
 , 

on the surface 
1

Ω  ( 0x = ) we have boundary condition: 

 (1) (1)
or

0
u u

B B
u

σ

=  ,  (1) (1)( ) ( ) 0
u u

B B
v w

y z
σ σ

∂ ∂
+ =

∂ ∂
 . 
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Constraint
 

 

 Thus, the integral term on the surface 
1

Ω  ( 0x = ) in the expression (4.3) becomes 

 
(1) (1)

0

0 0 0

00

d d ( ) ( ) d d 0

u u u

b c

B

x x x

x B B

v w
u y z u v w y z

y z y z
σ σ

= = =

= +

Ê ˆ∂ ∂ ∂ ∂Ê ˆ Ê È ˘ˆ+ = + + =Á ˜Á ˜ Á ˜Í ˙Ë ¯ Ë ¯∂ ∂ ∂ ∂Î ˚Ë ¯
Ú Ú ÚÚ ÚÚ . (4.12) 

 Similarly, the all other integral terms in the expression (4.3) also vanish. In this case the integral 
1

0I = . 

 Hence the Rayleigh’s quotient (3.3) is non-negative in the condition of strong ellipticity (3.7), since 

from the function 
1

U  is non-negative. Moreover, the positive definiteness of the function 
1

U  for dis-

placements ( , ,u v w) is dependent on the uniqueness of solution of the Eq. (3.9). It is easy to see that 

except for the three cases of boundary condition, the Eq. (3.9) has unique zero solution if its each surface 

is an aggregation of the type I, II and III boundary sub-regions, i.e. (4.11) holds (proof to see A.3 in the 

Appendix). Thus, on the basis of Conclusion I, we obtain an extension of Ryzhak’s result: 

Conclusion II An elastic cuboid (Fig. 2) satisfying the condition of strong ellipticity (3.7) is stable if 

each of its surfaces is an aggregation of the type I, II and III boundary sub-regions, namely the condition 

(4.11) holds, except for three cases of boundary conditions which give neutral stability. 

 We remark that Ryzhak’s result is for anisotropic elasticity; in that sense it is more general. However, 

it has a limitation that each surface of the cuboid is only one of the type I, II and III boundary sub-

regions, but can not fit together in the three types of boundary sub-regions in the same surface, namely, it 

requires the limitation: 

 ( ) ( ) ( )or or ( 1, 2, , 6) .i i i

i u u u
B B B i

σ σ
Ω

�

= =   (4.13) 

 Comparing with (4.11) it is clear that the condition (4.11) is weaker than the limitation (4.13). Dis-

tinctly, in the isotropic elasticity case, the aforementioned result extends Ryzhak’s one. Actually, it has 

no limitation to the shape, number and location of the sub-regions ( )i

u
B , ( )i

u
B

σ
 and ( )i

u
B
σ

 in each of the sur-

faces 
i

Ω  ( 1, 2, , 6)i
�

= . 

4.4 Examples of exact solutions 

In order to show that the square of natural frequency 2
ω  is positive, we intend to give an exact solution 

to a specific example. Consider an elastic cuboid in which all six surfaces are type II ( ( )i

i u
B

σ
Ω =  

( 1,2, ,6)i �= ) and the condition of strong ellipticity holds. Although Ryzhak’s qualitative result has 

covered the case of this example, however from application point of view, it is highly significant to find 

an exact solution of frequencies. To the end, for this example we assume displacement modes as 

 
1 2

3

sin cos cos , cos sin cos ,

cos cos sin ,

l m n l m n

l m n

u A x y z v A x y z

w A x y z

α β γ α β γ

α β γ

= =

=

 (4.14) 

where / , / , /
l m n

l a m b n cα β γ= p = p = p  ( , , 1, 2,l m n
�

= ). 

Fig. 2 (online colour at: www.pss-b.com) A cuboid con-

strained on its periphery so that each of its surfaces has at 

least one region of partial or full constraint. 

 



phys. stat. sol. (b) 244, No. 3 (2007)  1019 

www.pss-b.com © 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 

Editor’s

Choice

 It is easy to validate that the displacement mode (4.14) satisfies all boundary conditions on the six 

surfaces. Substituting the displacement mode (4.14) into the equation (2.5) gives 

 2
[ ] 0ρω- =B I A  , 

where the vector [ ]1 2 3
, ,A A A

Τ

=A and the coefficient matrix 

 

2 2 2

2 2 2

2 2 2

( 2 ) ( ) ( ) ( )

( 2 ) ( ) ( ) .

sym. ( 2 ) ( )

l m n l m l n

m l m m n

n l m

G G G G

G G G

G G

λ α β γ λ α β λ α γ

λ β α γ λ β γ

λ γ α β

+ + + + +È ˘
Í ˙

= + + + +Í ˙
Í ˙+ + +Î ˚

B  

The frequency equation is 

 2 2 2 2 2 2 2 2 22( ) det [ ] [ ( )] [ ( 2 ) ( )] 0 .
l m n l m n

f G Gω ρω ρω α β γ ρω λ α β γ= - = - - + + - + + + =B I  

 Hence we obtain 

 
2 2 2 2 2 2 2 2 2

1 2 3

2
( ) 0 , ( ) 0

l m n l m n

G Gλ
ω α β γ ω ω α β γ

ρ ρ

+
= + + > = = + + >    ( , , 1, 2,l m n

�

= ) . (4.15) 

 As an another example, all surfaces are type III ( ( )i

i u
B
σ

Ω =  ( 1, 2, , 6)i
�

= ), the displacement modes 

can be assumed as 

 
1 2

3

cos sin sin , sin cos sin ,

sin sin cos .

l m n l m n

l m n

u A x y z v A x y z

w A x y z

α β γ α β γ

α β γ

= =

=

  (4.16) 

Similarly, the same solutions of frequencies are obtained as the expression (4.15). 

4.5 Cuboid with stress-free surfaces: neutral stability 

Now we consider an elastic cuboid in which the material satisfies the condition: 

 0 , 2 0G Gλ> + =   (which is equivalent to 4

3
0K G= - <  or 0E >  and 1ν = ) (4.17) 

and the condition (4.6) holds, that is, each surface of the cuboid is an aggregation of the type I, II, II and 

IV boundary sub-regions, which includes stress-free boundary sub-region B
σ

 (Type 4). Observe that the 

condition on moduli and Poisson’s ratio differs from the prior condition; a new result is under discussion. 

Under the condition (4.17), the boundary condition on sub-region B
σ

, for example, on the surface 
1

Ω  

( 0x = ) (4.10) can be reduced into 

 
00 0

0 , 0 , 0 .
xx x

v w v u w u

y z x y x z
=

= =

∂ ∂ ∂ ∂ ∂ ∂Ê ˆ Ê ˆ Ê ˆ+ = + = + =Á ˜ Á ˜ Ë ¯Ë ¯ Ë ¯∂ ∂ ∂ ∂ ∂ ∂
 (4.18) 

This leads to the integral term on the surface 
1

Ω  ( 0x = ) in the expression (4.3) to vanish: 

 
(1) (1) (1)

(1)

0 0 0

00 0

0

d d ( ) ( ) d d

d d 0 .

u u u

b c

x x x

x B B B

xB

v w
u y z u v w y z

y z y z

v w
u y z

y z

σ σ

σ

= = =

=

=

Ê ˆ∂ ∂ ∂ ∂Ê ˆ Ê È ˘ˆ+ = + + +Á ˜Á ˜ Á ˜Í ˙Ë ¯ Ë ¯∂ ∂ ∂ ∂Î ˚Ë ¯

∂ ∂È Ê ˆ ˘+ + =Á ˜Í ˙Ë ¯∂ ∂Î ˚

Ú Ú ÚÚ ÚÚ ÚÚ

ÚÚ
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 Similarly, all other integral terms in the expression (4.4) also vanish, so the integral 
1

0I = . 

It should be noticed that when the condition (4.17) holds the function 
1

U  is non-negative: 
1

0U ≥ . The 

equality holds only if all rotations 0
x y z

ω ω ω= = = , that is 0—¥ =u , it means that the displacements 

can be expressed by a potential function ( , , )x y zψ : 

 , , .u v w
x y z

ψ ψ ψ∂ ∂ ∂
= = =

∂ ∂ ∂
 (4.19) 

 Taking a special potential function 

 3 3 3 3 3 3( ) ( ) ( )Cx y z x a y b z cψ = - - -  (4.20) 

it is evident that both displacements and the components of strain vanish in the six surfaces 
i

Ω  

( 1, 2, , 6)i
�

= , and it implies all components of stress vanish also in the six surfaces. 

 Thus, when each surface of the cuboid is aggregation of the type I, II, III and IV boundary sub-

regions, the solution (4.19) and (4.20) is non-trivial solution of displacement in .V  In this case the 

Rayleigh’s quotient (3.3) degenerates into positive semi-definiteness but not positive definiteness. This 

leads to a result: 

Conclusion III An elastic cuboid has neutral stability if the material satisfies the condition (4.17) and 

each of its surfaces is an aggregation of the type I, II, III and IV boundary sub-regions. 

5 Stability of an elastic cylinder with negative modulus 

Consider an elastic solid cylinder with arbitrary cross-section, not necessarily of circular or rectangular 

section, and arbitrary length; this includes cuboids under lateral constraint. Suppose that the lateral sur-

face of the cylinder is fully fixed and the top and bottom surfaces are fully free, as shown in Fig. 3. Take 

the axis of shape-center of the cross section as the coordinate z-axis and the bottom surface in the xy-

coordinate plane. Denote the lateral surface of the cylinder by D , the bottom and top surfaces by 
1

Ω  and 

2
Ω , respectively. The whole boundary of the cylinder is V∂ . 

 In order to examine the stability of the cylinder, we write the strain energy function (2.9) as new form: 

2 2 2 2 21
( ) ( ) ( 4 ) ( ) 4 .

2

y yx x

x y z zx yz z x y z

u uu u
W G G

x y x y
λ ε ε ε γ γ ω ε ε ε

∂ ∂∂ ∂Ï È Ê ˆ ˘¸= + + + + + + + + - + -Ì ˝Á ˜Í ˙Ë ¯∂ ∂ ∂ ∂Î ˚Ó ˛
  (5.1) 

 

 

Fig. 3 A cylinder of arbitrary cross section constrained on its peri-

phery (the lateral surface). 
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 Substituting (5.1) into the strain-displacement Eq. (2.2), incorporating energy conservation, Eq. (2.8) 

we obtain the new form of Rayleigh’s quotient: 

 

2 2

2

2
2 2 2

d

( , , )
( ) d

V

V

U V I

R u v w

u v w V

ω

ρ

+

= =

+ +

Ú

Ú
 , (5.2) 

where the function 

 

2 2 22

2

2

1
( )

2

u v w w v u w v u
U G G

x y z y z z x x y

u v w
G

x y z

λ
Ï È ˘∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂Ô Ê ˆ Ê ˆ Ê ˆÊ ˆ= + + + + + + + + -Ì Í ˙Á ˜ Á ˜ Á ˜Ë ¯Ë ¯ Ë ¯ Ë ¯∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂Ô Î ˚Ó

¸∂ ∂ ∂ ÔÊ ˆ+ + - ˝Á ˜Ë ¯∂ ∂ ∂ Ǫ̂

   

and the integral 

 
2

4 d .

V

v u u v
I G V

x y x y

∂ ∂ ∂ ∂Ê ˆ= -Á ˜Ë ¯∂ ∂ ∂ ∂Ú  

 The direction cosines on the top and bottom surfaces become 

 
1, 2 1, 2

0
x y

n n
Ω Ω

= =   (5.4) 

and the displacement boundary condition on the lateral surface is 

 0 , 0 .
D D D

u v w= = =   (5.5) 

Using integration by parts, we can transform the integral into the closed surface integral: 

 

1 2

2
2 d 0 .x y

D

u v v u
I G n v u n u v S

y y x x
Ω Ω+ +

∂ ∂ ∂ ∂È Ê ˆ Ê ˆ ˘= - + - =Á ˜Í ˙Ë ¯Ë ¯∂ ∂ ∂ ∂ ˚ÎÚ   (5.6) 

Obviously, under the condition (3.1) we have the function 
2

0U ≥ . The equality holds only if the dis-

placement u , v and w  satisfy the following all equations: 

 0
w

z

∂
=

∂
 ,  0

u w

z x

∂ ∂
+ =

∂ ∂
 ,  0

v w

z y

∂ ∂
+ =

∂ ∂
 ,  0

u v

x y

∂ ∂
+ =

∂ ∂
 ,  0

v u

x y

∂ ∂
- =

∂ ∂
 .  (5.7) 

Integrating the front three equations in (5.7) we get the solution 

 
1 2

( , ) , ( , ) , ( , )w x y u z x y v z x y
x y

ϕ ϕ
ϕ ψ ψ

∂ ∂
= = - + = - +

∂ ∂
 ,  (5.8) 

where ϕ , 
1

ψ  and 
2

ψ  are functions to be determined. Introducing the solution (5.8) into the last two equa-

tions in (5.7) and using the arbitrariness of the variable z  we have 

 
2 2

2 2

2 2 2 2
0

x y
ϕ

∂ ∂Ê ˆ— = — = +Á ˜Ë ¯∂ ∂
  (5.9) 

(5.3)
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and Cauchy- Riemann equation of 
1

ψ  and 
2

ψ : 

 1 2 1 20 , 0 .
x y y x

ψ ψ ψ ψ∂ ∂ ∂ ∂
+ = - =

∂ ∂ ∂ ∂
 

 This results in 

 2

2 1
0ψ— =  ,  2

2 2
0ψ— =  .  (5.10) 

 Substituting the solution (5.8) into the boundary condition (5.5), we get 

 0
n Γ

ϕ∂
=

∂
,  (5.11) 

 
1

0
Γ

ψ =  ,  
2

0
Γ

ψ =  ,  (5.12) 

where Γ  is the closed line which is the boundary of the projective region of cross-section in the xy-

coordinate plane. The uniqueness of the Dirichlet problem (5.10) and (5.12), and the Neumann problem 

(5.9) and (5.11) give 
1 2

0ψ ψ= ∫  and constantϕ = , respectively. Also, from the last boundary condition 

in (5.5) and the first expression in (5.8), we have 0
Γ

ϕ = . Thus, 0ϕ ∫ . Hence, the function 
2

0U ≥ . The 

equality holds only if 0u v w= = = . This implies that the Rayleigh’s quotient (5.2) is positive definite. 

Here we obtain a new result: 

Conclusion IV An elastic cylinder with arbitrary cross-section and in which the lateral surface is fully 

fixed and the top and bottom surfaces are fully stress-free is stable if its material satisfies the condition 

(3.1), namely 0, 0G Gλ> + > . 

 As shown in Section 3, the (3.10) condition is allows 0, /3 0G G K> - < < , i.e. that the elastic parame-

ters are located in the region II in which both the Young’s modulus E  and the bulk modulus K  are nega-

tive (see Fig. 1). We can also have G > 0, K > 0. 

6 Discussion 

In the elastic cuboid, there is no assumption regarding the proportions; the cuboid could be a long bar or 

a thin plate. It is therefore not surprising that a constraint, over all directions or some directions must be 

applied to a region of each surface for stability of a solid obeying strong ellipticity. Strong ellipticity 

allows negative bulk modulus K and negative Young’s modulus E, but the lower modes of a long bar are 

governed by E. A fully free long bar therefore must therefore have a positive E to be stable. Stability 

conditions for cuboids with fixed proportions are not yet known. The present approach to the cuboid 

stability is on the basis of the Rayleigh’s quotient and is totally different from the Ryzhak’s Fourier ex-

pansion procedure. The present approach is more direct and allows us to deal with various much more 

complex assembled forms of the three types of boundary sub-regions in the same surface. 

 A particular case of the cuboid corresponds to neutral stability. Specifically, as an interesting example 

of the cuboid analysis, the elastic cuboid in which six surfaces are all stress-free is neutrally stable if its 

shear modulus G > 0 and bulk modulus K = –4G/3 < 0. Usually, an elastic body with any negative 

modulus is considered to be unstable if its boundaries are fully stress-free, however in this example neu-

tral stability rather than instability occurs. The condition (4.17) leads to vanishing of the velocity of lon-

gitudinal waves of a medium. This condition was of some historical interest in the context of early mod-

els of electromagnetism based on a concept of space as an elastic medium [36]. For the special case that 

the entire boundary is fixed, Ericksen and Toupin [37] pointed that an elastic body with arbitrary regular 

shape has neutral stability when the condition (4.17) holds, and emphasized the importance of distin-

guishing between ordinary and neutral stability. Usually, the stability ensures the uniqueness of solution, 
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however the neutral stability does not imply uniqueness of solution. Indeed, for the case of stress bound-

ary and mixed boundary, the solution is non-unique under the condition [25, 26]. 

 As for cylinders constrained on the lateral surface, the condition (3.10) satisfies the strong ellipticity 

condition (3.7). In the view of physics, the condition 0Gλ + >  means the equibiaxial plane strain 

modulus is positive ([32], p. 107). As specific examples, the thin or thick elastic plates with the fixed  

side and the cuboid in which the top and bottom surfaces are fully stress-free and the other four surfaces 

are fully fixed are special cases of the cylinder discussed here. It is should be pointed out that the  

case of cuboid with two stress-free and four fixed surfaces is not covered in Ryzhak’ result. Referring to 

Fig. 1, it is interesting that isotropic materials with Poisson’s ratio below the lower stability limit of  

–1 can be stabilized by various kinds of constraint, but if Poisson’s ratio exceeds the upper stability limit 

of 1/2, strong ellipticity is violated, leading to an instability which occurs regardless of surface con-

straint. 

 Implications regarding experiment are as follows. Negative structural stiffness is well known in the 

context of post-buckled elements, and has been observed experimentally (e.g. [2]). Negative elastic or 

viscoelastic moduli have been inferred from the behavior of composites containing ferroelastic inclu-

sions, but have not been directly observed. The present results indicate the possibility of observation of 

negative moduli under constraint associated with instrumental displacement control. 

7 Conclusions 

It is not necessary that a partially constrained elastic solid exhibit a positive definite strain energy  

to be stable. The elastic object under partial constraint may have a negative bulk modulus and yet  

be stable. A cylinder of arbitrary cross section with the lateral surface constrained and top and bottom  

free surfaces is stable if the shear modulus G > 0 and –G/3 < K < 0 or K > 0. A cuboid is stable provid- 

ed each of its surfaces is an aggregate of regions obeying fully or partially constrained boundary condi-

tions. 

Appendix 

A1 Derivation of (3.6) 

Using integration by parts, the first term in volume integral (3.5) becomes 

 

2 2

d d d

d

z y

V V V

z y

V

w v v w w w w w
V v v V n n v S

y z y z y z y z y z

w w
n n v S

y z

�

�

∂

∂

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂Ê ˆÊ ˆ Ê ˆ- = - - + -Á ˜ Á ˜Á ˜Ë ¯ Ë ¯Ë ¯∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

∂ ∂Ê ˆ= -Á ˜Ë ¯∂ ∂

Ú Ú Ú

Ú
 

or another form: 

 

2 2

d d d

d .

y z

V V V

y z

V

w v v w v v v v
V w w V n n w S

y z y z y z y z z y

v v
n n w S

z y

�

�

∂

∂

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂Ê ˆÊ ˆ Ê ˆ- = - - + -Á ˜ Á ˜Á ˜Ë ¯ Ë ¯Ë ¯∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

∂ ∂Ê ˆ= -Á ˜Ë ¯∂ ∂

Ú Ú Ú

Ú
 

 For the other terms in volume integral (3.5) have similar expressions. These expressions result in 

(3.6). 
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A2 Derivation of the identity (4.5) 

The line integration (4.4) can be rewritten as 

 

0 0

0 0

0 0

2 ( ) d ( ) d

( ) d ( ) d

( ) d ( ) d .

xy yz

yz zx

zx xy

z c x a

z x

R R

x a y b

x y

R R

y b z c

y z

R R

J G wu y wu y

uv z uv z

vw x vw x

� �

� �

� �

= =

= =

∂ ∂

= =

= =

∂ ∂

= =

= =
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ÏÈ ˘Ô
= +Í ˙Ì

Í ˙ÔÎ ˚Ó

È ˘
+ +Í ˙
Í ˙Î ˚

È ˘Ô̧
+ +Í ˙˝
Í ˙ÔÎ ˚˛

Ú Ú

Ú Ú

Ú Ú

   

 Calculating the front two terms in the above line integrals, we have 

 

0 0

0 0

0 0

0 0
0 0

0 0

0 0

0 0
0 0

( ) d ( ) d

( ) d ( ) d ( ) d ( ) d

( ) d ( ) d ( ) d ( ) d

0 .

xy yz

z c x a

z x
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b b

x a x a x x

z c z z c z
b b

b b

x a x x a x

z z z c z c
b b

wu y wu y

wu y wu y wu y wu y

wu y wu y wu y wu y

� �
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= =

∂ ∂

= = = =

= = = =

= = = =

= = = =

+

= - + -

+ - + -

=

Ú Ú

Ú Ú Ú Ú
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 Similarly, the other terms in the line integrals in (A.1) all vanish. Hence the identity 0J ∫  is obtained. 

A3 The proof for uniqueness of solution of the Eq. (3.9) in the condition (4.11) 

On the basis of Green’s first identity: 

 
22

d d d

V V V

V V S
n

�
∂

∂
◊— = - — + ◊

∂
Ú Ú Ú

u

u u u u  

and Eq. (3.9), we get 

 
2

d d

V V

V S
n

�
∂

∂
— = ◊

∂
Ú Ú

u

u u  

6

1

i

i

V Ω

=

Ê ˆ
∂ =Á ˜Ë ¯

Â  .  (A3.1) 

 In the surface
1

Ω  the integral 

 

1 1

1

0

d d d .

x

u v w
I S u v w y z

n x x x
Ω Ω

Ω

=

∂ ∂ ∂ ∂Ê ˆ= ◊ = + +Ë ¯∂ ∂ ∂ ∂Ú Ú
u

u  

 Since equations 0—◊ =u  and 0—¥ =u  still hold in the boundary V∂ , we have 

 , , .

u v w v u w u

x y z x y x z

∂ ∂ ∂ ∂ ∂ ∂ ∂Ê ˆ= - + = =Á ˜Ë ¯∂ ∂ ∂ ∂ ∂ ∂ ∂
 

(A2.1) 
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Thus the integral 

 

1

1

0 0 0

0 0 0 0

( ) ( )

( ) ( ) ( ) ( ) d d .

x x x

x x x x

I u v w
y z

v u w u y z
y z

Ω

Ω

= = =

= = = =

∂ ∂Ï È ˘
= - +Ì Í ˙∂ ∂Î ˚Ó

∂ ∂È ˘¸
+ + ˝Í ˙∂ ∂Î ˚˛

Ú
   

Since the boundary condition in the surface (1) (1) (1)

1 u u u
B B B

σ σ
Ω = + +  is either 0u =  for (1) (1)

u u
B B

σ
+  or 

0v w= =  for (1)

u
B
σ

, from (A3.2) we have 
1

0I
Ω

= . Similarly, in the other surfaces the integral 

 d 0

i

S
n

Ω

∂
◊ =
∂

Ú
u

u  ( 2, 3, , 6i
�

= ) . 

Hence, from (A3.1) the displacement gradients all are zero. This implies the displacements are constants, 

namely, the rigid shift displacements. Only for the following three cases of boundary condition: (i) The 

surfaces 1,2Ω  are type II and the others are type III; (ii) The surfaces 3,4Ω  are type III and the others are 

type II; (iii) The surfaces 5,6Ω  are type III and the others are type II, the rigid shift displacements are 

possible along x, y, z direction, respectively. Except for the three cases the Eq. (3.9) has unique zero 

solution. 
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