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Bounds on properties are useful in guiding design of heterogeneous materials and in understanding
the distinction between effects that are physically reasonable and those that are not. Several
bounds on physical properties can be exceeded by an appropriate choice of material. The reason is
that the “proofs” of bounds contain either unstated assumptions about the material or assumptions
that are couched in language that appears to be that of incontrovertible mathematics but that
actually entails assumptions about the material. If those assumptions are relaxed, limits or bounds
can be exceeded, as is demonstrated by analysis and experiments. For example, heat capacity,
compressibility, electrical capacitance, and refractive index can be negative. Thermal expansion in
composites can be larger or smaller than that of any constituent and can be negative. Materials and
systems are known that are non-Hermitian or nonreciprocal. Currently, active fields of endeavor
have arisen from such conceptual sources. Research efforts have led to the development of new
materials and new classes of materials.
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I. INTRODUCTION

Thermodynamic limits on physical properties of systems
and materials are useful in helping to discriminate between
properties that are physically attainable and those that are not
physically reasonable. For example, physical properties such
as dielectric permittivity, diffusivity (Nye, 1976), and elastic
stiffness (Sokolnikoff, 1946; Nye, 1976) are normally con-
sidered to be positive. Bounds on properties of heterogeneous
solids such as polycrystalline materials and composites can
be useful because the microstructure can be sufficiently
complicated that exact analysis of the properties is difficult.
Moreover, in many experimental situations, there is incom-
plete knowledge of the microgeometry of the composite even*Contact author: rlakes@wisc.edu
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if many sectional images are available. Bounds are also
pertinent in structural optimization analyses.
The upper and lower bounds for physical properties of two-

phase and multiphase composites have been obtained in terms
of the volume fraction V and properties of the constituents
indicated by subscripts 1 and 2. For elastic properties such as
the shear modulus G, the Voigt relation for the upper bound
is particularly simple, Gc ¼ G1V1 þ G2V2 (Hill, 1963). For
the Reuss lower bound, the corresponding compliances are
considered. Composites with simple laminated structures
attain the Voigt and Reuss relations. Voigt and Reuss relations
also provide bounds on the dielectric or conductivity behavior
of a two-phase composite (Lurie and Cherkaev, 1986). Tighter
bounds for isotropic materials have been obtained for elastic
moduli (Hashin, 1962; Hashin and Shtrikman, 1963). Bounds
for elasticity of polycrystalline solids were developed as well
(Hill, 1952). These bounds are sufficiently useful that they are
tabulated for polycrystalline materials along with single-
crystal elastic properties (Simmons, 1965).
Limits and bounds often contain assumptions, sometimes

unstated, about the material. If one relaxes the assumptions and
uses an appropriate material, bounds on physical properties can
be substantially exceeded. Materials that exhibit sufficient
additional freedom may require further physical property
constants or variables for a full description. To properly
characterize such materials, all of them must be measured.
The question of possible violation of the fundamental laws

of thermodynamics is a different field of study and is not
explored in this Colloquium. For example, James Clerk
Maxwell considered a microscopic agent called a demon that
could sort atoms by their speed to alter the temperature of
adjacent chambers of gas that were initially at the same
temperature. By allowing only faster atoms to go into one
chamber, that one would become hotter and the adjacent one
would become cooler without any input of energy. That would
violate the second law of thermodynamics. The concept has
stimulated fundamental studies of thermodynamics and its
relation to other fields such as information theory. A micro-
scopic sorting agent may expend energy to measure the speed
of atoms, thus neutralizing any benefit. In addition, measuring
the speed of atoms generates information, and erasure of that
information at the end of the process requires energy. Such a
sorting agent has not been physically realized. Other kinds
of one-way devices and systems have been envisaged and
explored, but if entropy is reduced in one region, it is
increased elsewhere, so the second law of thermodynamics
has not been violated and no useful power is generated.
Known one-way systems may not obey reciprocity, as
reviewed in Sec. VI, but they do not offer any challenge to
the second law. For example, electrical diodes that allow
electric current in one direction are nonlinear. If they were
ideal, one could rectify electrical noise from thermal fluctua-
tions and extract power, but that is not possible, owing to the
real behavior of diodes. Similarly, studies of the possibility of
extracting power from the zero-point energy of the quantum
vacuum via Casimir type effects have not resulted in any
demonstrable violation of the first law of thermodynamics.
By contrast, derivations of various bounds and constraints on
physical properties of materials make use of thermodynamics
in a secondary sense and entail assumptions about the kinds of

materials. Such assumptions are not always stated. By
envisaging a material that does not obey the assumptions,
it may be possible to exceed the bounds on physical proper-
ties. That is the subject of this Colloquium.
Physical properties such as elastic constants and dielectric

constants are defined in Eqs. (12)–(14); elastic moduli are
defined in Eq. (9). For example, in elasticity Young’s modulus
E is defined as the inverse of a compliance S in Eq. (13)
corresponding to stress-free lateral surfaces and constant
temperature. Such properties are routinely used to predict
responses in configurations other than those used in the original
experiments. Stiffness and strength measurements by standard
tests are used to predict the durability of electric power lines
carrying considerable current. Testing configurations are gen-
erally not ideal. Often the nonideal aspect is inconsequential.
For example, in solids adiabatic and isothermal compliances
(Nye, 1976) typically differ by less than one part in 103. In
actual experiments and applications, there may be an exchange
of heat and even atoms with the environment, and hence an
unintended power input. All materials exhibit coupled field
effects (see Sec. V); systems are never fully closed. When such
effects are large by intent, interesting effects may occur. One
nevertheless speaks of properties such as elastic moduli, if one
prefers, as effective properties.
Materials studied in the context of exceeding bounds may

have an unusual or novel structure. That does not guarantee
unusual physical properties. For example, quasicrystals were
initially thought to be impossible based on geometrical
assumptions regarding crystals. Their properties, however,
do not exceed any bounds.
New materials and structures developed to achieve unusual

or extreme properties tend to be heterogeneous. Some of these
materials are composites with multiple constituents, and some
are foams or lattices containing ribs or surfaces and void
space. How fine must the structure size be in order to regard it
as a material? Because people in different disciplines have
pursued research in the areas under review, there is not
necessarily agreement. For the purposes of this review, when
continuum concepts of fields and material properties are used
to describe an object, it will be referred to as a material.
Some terminology has emerged in connection with materi-

als with extreme or unusual properties. For example, auxetic
refers to a negative Poisson’s ratio and metamaterial refers to a
material with unusual or extreme properties, in particular,
materials with structure at scales larger than the atomic scale
or the size of crystallites in a polycrystalline solid. The first
such materials and associated concepts considerably predate
the neologisms, and many recent studies do not use neolo-
gisms in the title or abstract. Consequently, scholarship is
impeded if one relies on such terminology. In this Colloquium
descriptive terms are used rather than neologisms. Primary
early references are cited to provide context for recent research
and to help discern the degree of novelty. It is the purpose of
this Colloquium to explore the conceptual underpinnings of
limits or bounds on physical properties, crucial assumptions in
obtaining the bounds, ways to exceed the limits, and the
evolution into currently active fields of research.
This Colloquium is organized as follows. In Sec. II heat

capacity is considered; the standard proof of positive heat
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capacity is discussed and negative heat capacity systems
are presented. Section III deals with elastic and viscoelastic
properties, including negative stiffness and moduli in
Sec. III.A.2. Proof of symmetry of the stress tensor is
presented and materials with an asymmetric stress tensor
are considered in Sec. III.B.2. The assumption of parity
invariance is discussed and chiral materials are reviewed in
Sec. III.B.3, and proof of symmetry of the modulus matrix is
discussed in Sec. III.B.4, with physical examples of materials
with an asymmetric modulus matrix addressed in Sec. IV.A.
Active and nonconservative materials are considered in
Sec. IV. Such materials enable stable negative properties
as well as “odd” effects associated with asymmetry of the
modulus tensor and additional elastic constants. Non-
Hermitian materials and systems are possible, as reviewed
in Sec. IV.F. Electrical capacitance and permittivity including
negative values are considered in Sec. IV.D. Coupled fields
including thermal expansion, piezoelectricity, and the Hall
effect are reviewed in Sec. V. Reciprocity with nonreciprocal
examples are reviewed in Sec. VI. Properties that depend on
resonance are reviewed in Sec. VII.

II. HEAT CAPACITY

A. Proof of positivity

When preparing coffee or tea, one applies heat under the
kettle. One does not expect the water to get colder or to freeze
solid. This experience is generalized and codified in the
concept of heat capacity and in the classic demonstration in
which is positive for constant volume (Wallace, 1972). The
coffee expands as it warms, so it is not at a constant volume.
It is not at constant pressure because atmospheric pressure
changes with the weather. Even so, the coffee warms when
heated, as expected.
The heat capacity is the ratio of change in heat Q to change

in temperature T,

CV ¼ ∂Q
∂T

����
V
; ð1Þ

in which the subscript V indicates constant volume.
This can be written in terms of the entropy S or the

energy U as

CV ¼ T
∂S
∂T

����
V
¼ ∂U

∂T

����
V
: ð2Þ

Following Wallace (1972), the first law of thermodynamics
is

dQ ¼ dU þ dW; ð3Þ

with dW the work done by the material. The quadratic form
containing the internal energy U is positive definite,

∂
2U
∂S2

����
V
> 0; ð4Þ

with T the temperature and S the entropy.

Thus, the internal energy must be a minimum with respect
to all variations, so d2U > 0. Therefore,

∂T
∂S

����
V
¼ T

CV
> 0: ð5Þ

The temperature T > 0, so CV > 0. The heat capacity is
positive, which means that if heat is added, the temperature
increases. In addition to the assumption of positive definite
energy density, the system is assumed to be in equilibrium.
It is also tacitly assumed that the material or system can be
subdivided. In solids the heat capacity at constant volume
differs from that at constant pressure or stress by 10−3 or less
(Nye, 1976). For a monatomic ideal gas, CP=CV ¼ 5=3.

B. Negative heat capacity

The notion of minimum internal energy is actually an
assumption about the system or material. In some didactic
analyses, the physical role of minimum internal energy as a
criterion of stability is provided (Reichl, 2016); in many
analyses it is not. Nevertheless, the analysis entails assump-
tions about the material.
Heat capacity is negative in stars (Lynden-Bell, Wood, and

Royal, 1968; Lynden-Bell, 1999; Posch and Thirring, 2005),
in which there is an internal source of power from nuclear
fusion as well as a long-range gravitational interaction. If the
fusion power increases in the star core, the star expands and is
observed to become cooler. This feedback due to negative heat
capacity stabilizes power production in stars like our Sun so
that they shine steadily for eons (Posch and Thirring, 2005).
The power within the star also increases as the star begins to
complete its evolution and begins fusing helium in the core in
addition to fusing hydrogen. The star then expands and cools
to become a giant. Such cooler giant stars are prominent in
the night sky, as seen by their warm yellow and orange colors.
The progenitor stars were hotter and were yellow white, white,
or blue white in color.
In star clusters the long-range gravitational interaction is

accounted for in orbital dynamics via the laws of motion.
Nevertheless, if more energy is introduced by a high velocity
star entering the cluster, there is expansion against gravity and
the average velocity of the stars; hence, the effective temper-
ature of the cluster decreases. Systems with long-range forces
such as gravity cannot be subdivided. The contrast with
thermodynamic “proofs” has been explained (Lynden-Bell,
1999). The notion of negative heat capacity was appreciated
by astronomers before it was by physicists (Lynden-Bell,
1999). Black holes constitute another gravitational example.
The temperature of the Hawking radiation decreases as mass
or energy is added, corresponding to a negative heat capacity.
Indeed, coupling of a thermodynamic system with gravity

suffices to allow a negative heat capacity, as presented in an
analysis of a thought experiment (Herrmann and Hauptmann,
1997). Specifically, in a simple model of negative heat
capacity of a star, a gas in a cylinder is heated. As with
many tutorials in thermodynamics, the gas is constrained by a
piston. In this model the piston is connected by a stalk to a
rotor disk that has a curved groove guide on which a string
moves. The stalk on the piston engages the inner rotor shown
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as a dark circle and causes the disk to rotate quasistatically.
The string supports a weight, as shown in Fig. 1. The
arrangement provides a force law FðxÞ ¼ −C2=xa, with C2

a constant and a a constant such that 1 < a < γ. The constant
γ is an adiabatic exponent of the gas for which PVγ ¼ const,
with P as pressure and V as volume. The system is stable if
a < γ. The actual pressure-volume curve is neither isothermal
nor adiabatic. As heat is added, the gas expands and cools.
The heat capacity is negative via the nonlinear coupling with
gravity. If one considers the gas and piston as the system with
the stalk doing work on it, the heat capacity of the gas alone
will be positive. That no longer models a star, in which gravity
cannot be decoupled from the thermal aspects.
Negative heat capacity can also occur in materials, such as

rapidly cooled amorphous materials near the glass transition
temperature that are not in equilibrium (Bisquert, 2005).
Negative heat capacity also occurs in the liquid-to-gas
transition of finite systems such as clusters of ions (Gobet
et al., 2002) and has been studied in the context of energy
fluctuations in the liquid-to-gas transition (Chomaz, Duflot,
and Gulminelli, 2000) and in a vorticity model (Andersen and
Lim, 2007).
The difference between extensive and intensive control

parameters (Gross, 2006) has been pointed out in micro-
canonical and canonical analyses of negative heat capacity in
phase transitions. Extensive properties are those that depend
on the extent of a system (hence the size). They change as the
system is scaled in size. Internal energy, entropy, and volume
are extensive variables. Temperature, by contrast, is called
intensive because it can vary with position. The assumption of
energy as an extensive quantity fails for gravitating systems
(Posch and Thirring, 2005) and for laboratory scale materials
near phase transitions (Gross, 2006). The notion is also
pertinent in macroscopic systems regardless of whether they
have long- or short-range interactions. The restriction to
homogeneous systems in the usual thermodynamic analyses
is often unstated, but the restriction excludes phase separation

and systems with few particles. Overcoming the thermody-
namic restriction to positive heat capacity is consistent with
conservation of total energy.

III. ELASTICITY AND VISCOELASTICITY

A. Stiffness and compressibility

1. Proof of positivity

In one dimension one expects a spring constant as a one-
dimensional stiffness to be positive. Similarly, for compressi-
bilityone expects an increase of pressure on a material to
cause a decrease in volume. This perspective is codified as a
thermodynamic proof, after Wallace (1972), as follows. The
pressure P at constant entropy S as indicated by the subscript
is, from the increment of work dW ¼ PdV,

P ¼ −
∂U
∂V

����
S
; ð6Þ

with V the volume. The quadratic form ∂
2U=∂V2 containing

the internal energy U is positive definite, so there must be a
minimum with respect to all variations d2U > 0,

d2U ¼ ∂
2U
∂S2

����
V
ðdSÞ2 þ 2

∂
2U

∂S∂V

����
VS
ðdSÞ2 þ ∂

2U
∂V2

����
S
ðdVÞ2. ð7Þ

The constant volume V and constant entropy S are indicated
by subscripts. Thus, considering only variations in volume at
constant entropy,

−
∂P
∂V

����
S
¼ 1

VkS
> 0; ð8Þ

with kS ¼ ð1=VÞð∂V=∂PSÞ the adiabatic compressibility.
Thus, the compressibility [and hence the bulk modulus K
(the inverse compressibility)] is positive.

2. Negative stiffness

The notion of minimum internal energy is actually an
assumption about the system or material. Exceptions are as
follows.
In one dimension negative spring constants can occur in

buckled spring systems, or buckled bars or tubes in which
energy is stored during the buckling process. Examples are
shown in Fig. 2. Because energy is stored, the object is not in
a minimum energy state as was assumed. A buckled object
is unstable by itself but may be stabilized by an external
constraint. In discrete (lumped) systems, it has long been
known that negative stiffness is possible (Panovko, Gubanova,
and Larrick, 1965). For example, if the input in the transverse
direction for the buckled spring or strip is displacement
controlled in Fig. 2, one can experimentally observe a region
of negative stiffness. For the buckled tube, the controlled
displacement is applied in the longitudinal (vertical) direction.
The system is stabilized by displacement control; a regime of
negative stiffness can be experimentally observed. If the force
is controlled, the strip will exhibit snap through instability.

FIG. 1. Negative heat capacity system intended to model a
star. A compressed gas in a cylinder is coupled to gravity via a
string on a nonlinear curved guide. As heat is applied, the
piston moves to the right as the gas expands, the disk rotates,
and the gas temperature decreases. Adapted from Herrmann
and Hauptmann, 1997.
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In three-dimensional solids, negative compressibility and
negative moduli are possible. The usual assumption of a
positive definite strain energy in elasticity (Sokolnikoff, 1946;
Nye, 1976) implies that a block of material with free surfaces
will be stable. If there is a constraint on the surfaces, the object
can be stabilized even if it contains stored energy and does not
manifest a positive definite strain energy.
There is more than one criterion of stability. The stability

criterion of strong ellipticity also applies; it allows a wider
range of properties than positive definiteness. The physical
meaning is that waves in the material propagate with a real
velocity. The bulk modulus (inverse compressibility) can be
negative, but the shear modulus must still be positive.
A strongly elliptic solid with a negative bulk modulus can

be stabilized provided that it is constrained at the surface.
For flexible foams measurement of the negative bulk modulus
was done constraining the specimen under volumetric pre-
strain (Moore et al., 2006). In foams individual cells exhibit a
negative incremental compressive modulus, but compression
of such a foam reveals a band instability because the axial C
elastic modulus must still be positive for stability (Lakes,
Rosakis, and Ruina, 1993) even with a constraint; if it is
negative, the material becomes unstable.
Negative elastic moduli in materials may be understood in

the context of the Landau theory of phase transformations
(Landau, 1965). Consider an energy function of strain and a
control variable such as temperature, electric field, magnetic
field, pressure, or composition, as illustrated in Fig. 3. For
example, let the normalized temperature T be lowered from
a level above the transformation temperature. The curve of
energy versus strain at that temperature has a single minimum.
This gradually flattens as temperature is lowered. The curve
develops two minima or potential wells. The condition of zero
strain becomes unstable. The crystal, if it is unconstrained,
then changes shape, volume, or both corresponding to positive
stiffness within a potential well at nonzero strain. If the strain
is a shear strain corresponding to a shape change, the trans-
formation is called martensitic. For example, nitinol (nickel

titanium) alloys exhibit martensitic transformations and shape
memory effects. If the strain is a hydrostatic strain, it is a
volume change transformation.
The curvature of the energy function represents an elastic

modulus. Therefore, a flattening of the curve at the trans-
formation corresponds to a softening of the modulus. One
or more moduli will soften near a critical temperature Tc.
If the bulk modulus softens more than the shear modulus, a
minimum occurs in Poisson’s ratio, with negative values
possible (see Sec. III.D), as has been observed experimentally
(Hirotsu, 1990; McKnight et al., 2008). Below Tc the shape of
the energy versus strain curve near the origin represents a
negative modulus. If the crystal is unconstrained, the crystal
will change shape, volume, or both rather than exhibit a
negative modulus. If it is constrained, the negative modulus
may be observed or consequences such as extreme damping or
modulus in a composite may be observed.

3. Extreme stiffness

The stiffness of a composite is normally considered to be
no larger than that of the stiffest constituent. The bounds on
stiffness combined with the positivity of the moduli of the
constituents based on the stability of an object with free
surfaces provide that limit (Hill, 1963; Hashin, 1962; Hashin
and Shtrikman, 1963). If one constituent is allowed to have a
negative modulus or the material is supplied with external
power, then the material does not obey the usual assumptions.
An analysis and experiment showed that extremely high
stiffness is possible (Lakes, 2001b).
Negative moduli in inclusions within a composite (Lakes,

2001b) have been used to attain arbitrarily large material
damping, as observed in an experiment (Lakes et al., 2001),
and stiffness exceeding classical bounds. Composites with
phase transforming inclusions in the negative stiffness regime
can be stiffer than diamond over a range of temperature during
a temperature scan (Jaglinski et al., 2007). The experiments
not only revealed extreme stiffness, they also admitted

FIG. 2. Negative stiffness via buckling of (a) a spring system
with constrained ends, (b) a flexible compressed strip with
constrained ends, and (c) a flexible tube compressed vertically
under displacement control. Arrows indicate an applied force or
displacement. (c) Adapted from Lakes, 2020.

FIG. 3. Landau energy curves for a phase transformation. The
normalized temperature is T. There are arbitrary units of energy
and temperature. The curvature represents an elastic modulus.
Adapted from Jaglinski et al., 2007.
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inference of the negative moduli of the inclusions. The
negative stiffness is possible because, in the vicinity of a
phase transformation, there is stored energy that can be
released during subresonant oscillatory deformation. These
materials are metastable. Solids containing inclusions of
negative stiffness can be made stable with an appropriate
choice of elastic constants (Drugan, 2007). Stable extreme
effective dynamic stiffness can occur, but not static stiffness
(Wojnar and Kochmann, 2014). Stiffness and damping of
ferroelectric materials such as those used as inclusions can
be tuned via the electric field as well as temperature (Wojnar,
le Graverend, and Kochmann, 2014).
A source of power may be envisaged (Gold, 1948;

Thompson, 1982; Martin, Mehta, and Hudspeth, 2000;
Lakes, 2012a) rather than an internal energy, as discussed
in Sec. IV.C. The extreme stiffness regime is stabilized via a
source of power in an irreversible condition.

B. Symmetry and asymmetry

1. Symmetry of the material

The material need not be isotropic (properties independent
of direction), though isotropy is often assumed in initial
studies of elasticity. In classical elasticity (Sokolnikoff, 1946)
stress σij (force divided by area) is related to strain ϵkl
(symmetric part of deformation gradient) via Cijkl as the
elastic modulus tensor,

σij ¼
X3
k¼1

X3
l¼1

Cijklϵkl: ð9Þ

This expression of Hooke’s law [Eq. (9)] allows for anisotropy
of the modulus or stiffness. There are 81 components of the
elastic modulus or stiffness Cijkl. The strain is symmetric by
definition. The stress is symmetric in classical elasticity via a
shear force balance argument. Then there are 36 independent
components of the modulus tensor for the least amount of
material symmetry corresponding to a triclinic crystal. It is
expedient to write the modulus as a six-by-six matrix in two
dimensions.
Physically, the modulus element C1111 is a stiffness in the x

direction that governs the speed of longitudinal waves in that
direction with a wavelength much shorter than the object size,
as in ultrasonic waves or seismic waves in Earth. Similarly, the
modulus element C3333 is a stiffness in the z direction. The
modulus element C2323 is a stiffness with respect to shear; it
governs static shear properties as well as the velocity of shear
waves. One can obtain all the modulus components by
transmitting waves in different directions provided that the
material is reasonably homogeneous on the scale of the
wavelength.
For measurements of static stiffness, it is expedient to use

the compliance formulation in which ϵij ¼ Sijklσkl, with
repeated indices summed over via the Einstein convention.
The material may be isotropic or anisotropic. The compliance
Sijkl is also called Jijkl. If one stretches or compresses a thin
bar or rod, the stiffness expressed as Young’s modulus E in the
x direction is E1 ¼ 1=S1111. The Poisson’s ratio ν is given by
the compliance element S2211 ¼ −ν12=E1.

2. Symmetry of the stress

Elastic solids undergo force per area or stress. Symmetry
of the stress tensor was demonstrated by arguing that an
unbalanced shear will cause a microelement of material to
accelerate to high spin, contrary to the assumed equilibrium
(Sokolnikoff, 1946; Nye, 1976).
The stress is symmetric provided that there is only force per

area and no distributed moment per area or volume. That is the
case provided that the size of the microstructure of the material
is negligible compared to the size scale in the experiment or
the homogenization analysis and provided that the material
does not experience distributed torques on magnetic or electric
dipoles. If there are such moments, they can balance an
asymmetric stress.
If moment per area is allowed, the solid is Cosserat

(Cosserat and Cosserat, 1909) [micropolar (Eringen, 1968)]
elastic, not classically elastic. The moment per area is propor-
tional to the gradient of a local rotation variable of points
called the microrotation. Cosserat solids have a characteristic
length scale that is non-negligible compared to the size scale
of the observations. There are six elastic constants for the
isotropic Cosserat solid in contrast to two elastic constants for
an isotropic classical solid. The classical theory of elasticity
has no length scale. By contrast, two characteristic lengths can
be expressed in terms of the tensorial constants of the Cosserat
solid. There is also an elastic constant that quantifies the
degree of coupling between the microrotation and the rotation
associated with the gradient of displacement of the points.
These are continuum properties, as is the case with classical
elastic constants; however, they can be related via homog-
enization analysis to physical length scales in the material
under study. If the characteristic lengths are orders of
magnitude smaller than the size scales in the experiment,
the material can be viewed as classically elastic.
Many experiments on bone, foams (Rueger and Lakes,

2019), and 3D rib lattices (Rueger and Lakes, 2018) have been
done in the context of Cosserat freedom. For isotropic
materials experiments have determined all six elastic con-
stants. Experimental protocols include measurements of non-
classical dependence of rigidity upon specimen thickness and
full field determinations of nonclassical deformation fields.
Full field methods have been used to demonstrate the
asymmetry of the stress in such materials. Wave methods
have also been used to study a granular ordered solid
interpreted in the context of Cosserat elasticity (Merkel,
Tournat, and Gusev, 2011).
For crystal lattices the predicted characteristic length scale

is on the order of the interatomic bond length (Minagawa,
Arakawa, and Yamada, 1980). In a 2D chiral lattice with a
negative Poisson’s ratio (Prall and Lakes, 1997), the character-
istic length was found to be on the order of the cell size
(Spadoni and Ruzzene, 2012).
There are other theories of elasticity with different degrees

of freedom. A theory with less freedom than classical
elasticity was studied during the development of elasticity
theories. This theory, based on an analysis of forces between
atoms in a material, predicted a Poisson’s ratio of 1=4 for all
isotropic materials and also fewer constants than classical
elasticity for anisotropic materials. By contrast, classical
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elasticity, based on a tensor analysis of a continuum that
undergoes strain in response to stress, predicts a range of
Poisson’s ratio from −1 to 1=2 for isotropic materials. Early
experiments revealed common materials to have Poisson’s
ratios ranging from 0.2 to 0.45, so the tensorial approach was
chosen as the basis for what is now called classical elasticity.
The early analysis of interatomic forces turned out to contain
overly restrictive assumptions: it assumed that the forces were
central forces and that the motion of the atoms was affine.
Moment per volume, in contrast to moment per area, occurs

in a magnetic material with dipoles in the presence of a
magnetic field (Dorfmann and Ogden, 2023) or in a ferro-
electric material in an electric field. The stress in such
materials can be asymmetric.

3. Symmetry of handedness: Chirality

Chiral materials distinguish right- versus left-handedness.
Chirality is well known in the chemistry of biological
materials such as sugar and DNA and also in mineral crystals
such as quartz. The role of chirality is also well known in
coupled field effects such as piezoelectricity and pyroelec-
tricity, as well as in optical activity. Chirality is pertinent in
this Colloquium because it is ignored in many analyses yet can
give rise to interesting behavior and nonclassical response,
including effects in non-Hermitian materials and systems,
generalized elasticity, and Poisson’s ratio beyond the
accepted range.
As for designed chiral materials, chiral inclusions as

in Fig. 4 can be incorporated into designed composites.
Alternatively, lattices of ribs, plates, or surfaces can be made
in chiral form.
Wood is chiral on macroscopic and microscopic scales.

Some trees exhibit a substantially spiral grain (Leelavanichkul
and Cherkaev, 2004). The resulting increase in flexibility may
confer an advantage in windy environments. The chirality of
wood on a microscopic scale has been observed and has been
exploited to make high performance actuators that twist in
response to a change in relative humidity (Plaza et al., 2013).
This is a coupled field effect; see Sec. V.
Physical properties describable by tensors of odd rank, for

example, piezoelectricity and pyroelectricity, require materials
to be chiral for nonzero effects. Chirality cannot be incorpo-
rated in classical elasticity because the fourth rank modulus or
compliance tensor is invariant to the inversion of all three
coordinate axes corresponding to chiral asymmetry.
Cosserat solids, which admit distributed moments and an

asymmetric stress (see Sec. III.B.2), have sufficient freedom to
accommodate elastic chirality. Phenomena such as coupling
between squeezing and twist deformation can occur in chiral

solids, as shown in an analysis (Lakes and Benedict, 1982)
and experiments on bone (Lakes, 1981) and lattices (Reasa
and Lakes, 2020). There are nine elastic constants for an
isotropic chiral 3D solid. Chirality is also of interest in the
context of active materials and non-Hermitian materials,
as reviewed in Sec. IV.

4. Symmetry of the modulus tensor

A material that is classically elastic, and possibly aniso-
tropic, is describable by a conserved strain energy function
U ¼ ð1=2ÞCijklϵijϵkl in which the stress is σij ¼ ∂U=∂ϵij
(Sokolnikoff, 1946). The strain is ϵij. Then the modulus is
symmetric with respect to the exchange of pairs of indices
Cijkl ¼ Cklij, and the number of independent elastic constants
is reduced from 36 to 21 for a triclinic material. Similarly,
the compliance is symmetric (Sijkl ¼ Sklij). The number of
classical independent constants is also reduced for other
symmetries, for example, from twelve to nine for orthotropic
and from six to five for hexagonal or axisymmetric. There are
three moduli or compliances for cubic symmetry and two
moduli for isotropic symmetry, regardless of whether the
modulus or compliance tensor is symmetric (Rogers and
Pipkin, 1963).
Not all materials are describable by a conserved strain

energy, as presented in Secs. IV.A and III.A.2. Asymmetry of
the modulus or compliance that may be called odd can occur,
giving rise to additional constants (see Sec. IV.A), as dis-
cussed in Sec. IV.E.

C. Viscoelastic damping

1. Phenomena and positivity

Viscoelastic damping is manifest as a phase angle between
stress and strain when deformation is sinusoidal in time in
decay of amplitude of vibration of an object following an
impact, as well as in the attenuation of waves. Damping can be
represented as the imaginary part of a stiffness or modulus. In
the time domain, strain increases in creep if the material is
held under constant stress. All viscoelastic phenomena are
nonequilibrium.
The damping has been proven to be positive by appealing

to energy principles. Specifically, the assumption of a non-
negative rate of dissipation of energy implies positive visco-
elastic damping (Christensen, 1972). Similarly, bounds have
been obtained on properties of viscoelastic composites
(Roscoe, 1969).

2. Extreme and negative viscoelastic damping

Energy principles entail an assumption about the type
of material. Actual materials may be made with constituents
with stored energy or there may be an external power source
that allows amplification, which is effectively a negative
damping.
As for composites with constituents with stored energy (see

Sec. III.A.2), damping can be negative or can greatly exceed
that of either constituent and can exceed predictions made
using classical analysis. Specifically, composites with inclu-
sions of negative stiffness can exhibit arbitrarily large material

FIG. 4. Chiral inclusions. Left image: bent wire chiral inclusion.
Adapted from Tsai et al., 2005. Right image: twisted inclusion.
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damping via analysis (Lakes, 2001b), via experiments with
buckled tubes (Lakes, 2001a), and in experiments with a
composite containing phase transforming inclusions (Lakes
et al., 2001). Transient negative damping was observed in
these materials as well.
Negative damping also occurs in materials that are provided

with a power source. This includes biological materials, which
have a metabolic power source and are in certain semi-
conductors provided with an electric current. Such negative
damping is not limited to transient effects. Details are
provided in Sec. IV.B.

D. Poisson’s ratio

Poisson’s ratio refers to the ratio of lateral contraction
strain to axial extension strain during stretching. Visualize a
rubber band becoming thinner when stretched. The classical
isotropic bounds on Poisson’s ratio (Sokolnikoff, 1946) are
from −1 to 0.5, thus allowing negative values. The bounds on
Poisson’s ratio are based on positivity of the bulk modulus
(inverse compressibility) and the shear modulus. Negative
Poisson’s ratio solids, while initially counterintuitive, have
been with us for some time in two dimensions (Gibson et al.,
1982) and three dimensions (Lakes, 1987) and now constitute
a popular field of study; some representative articles are cited
later in the Colloquium. Negative Poisson’s ratios, though
they do not necessarily violate any bounds, are still counter-
intuitive to many. The word auxetic was introduced for
negative Poisson’s ratio materials well after they were first
developed; the terminology is now broadly used. Achieving a
negative Poisson’s ratio via a heterogeneous cellular structure
does not depend on the chemistry of the solid material and
does not depend on stored energy or metastability. Polymers
and metals have been used to make these materials (Friis,
Lakes, and Park, 1988).
A chiral 2D lattice (Prall and Lakes, 1997) exhibited a

Poisson’s ratio of −1, regardless of strain. A 2D lattice with
star shaped cells exhibited a Poisson’s ratio tunable to negative
values by angle (Wang, Shen, and Liao, 2017).
Negative Poisson’s ratios have been inferred or observed in

a variety of systems and materials. For example, a lattice of
hinged rigid units or polygons exhibits a negative Poisson’s
ratio (Wojciechowski, 1989; Grima, Alderson, and Evans,
2005). This kind of lattice also resists deformation due
gradients in stress to a greater extent than known materials
that exhibit an asymmetric stress; see Sec. III.B.2.
Poisson’s ratio can become negative in materials near a

phase transformation (Hirotsu, 1990; McKnight et al., 2008).
Figure 5 shows the softening of the bulk modulus and a
minimum in Poisson’s ratio for quartz near a phase trans-
formation after McKnight et al. (2008). In such materials the
bulk modulus (inverse compressibility), called K or B, softens
more than the shear modulus. A negative bulk modulus is
predicted via the Landau theory of phase transitions and is
inferred in experiments with composites, as discussed in
Sec. III.A.2, but violates the assumption of positive definite
strain energy.
Hierarchical laminates can give rise to a negative

Poisson’s ratio (Milton, 1992) in two dimensions, as
illustrated in Fig. 6, and in three dimensions. There must

be a sufficient contrast in modulus between the constituents
for the Poisson’s ratio to be negative.
A 2D lattice with interlocking hexagonal subunits with

embedded negative stiffness elements displays a Poisson’s
ratio of −1 and tunable negative stiffness (Hewage et al.,
2016). The relationship between a negative Poisson’s ratio and
negative stiffness is illustrated in Fig. 7. The region for which
bulk modulus K and shear modulus G are positive is stable.
Negative Poisson’s ratio is possible if the bulk modulus is
sufficiently small. If the bulk modulus becomes somewhat
negative, the material no longer obeys the criterion of positive
definite strain energy. An unconstrained block is unstable;
however, an external constraint can stabilize it provided that
the solid obeys the condition of strong ellipticity. Strong
ellipticity, which entails positive wave speeds, is a less
rigorous condition than positive definiteness. If strong

FIG. 5. Moduli and Poisson’s ratio ν for quartz near a phase
transformation. The bulk modulus softens much more than the
shear modulus near the transformation temperature. Adapted
from McKnight et al., 2008.

FIG. 6. Hierarchical laminate with a negative Poisson’s ratio.
Adapted from Milton, 1992.
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ellipticity is violated, the material becomes unstable with
respect to the formation of bands of heterogeneity. Such bands
are observed in some materials that undergo phase trans-
formations and in open cell foams under compression.
In three dimensions, if elastic moduli are allowed to be

negative, then the Poisson’s ratio can attain values outside the
classically allowable range (Wang and Lakes, 2005). Negative
moduli entail instability. As we have seen, if a specimen of
material is constrained at its surface, then it may be stabilized,
thereby allowing negative moduli. While negative incremental
bulk modulus has been observed in constrained triaxial
compression experiments, it is not easy to measure
Poisson’s ratios under constrained conditions.
In directionally isotropic 3D chiral (Reasa and Lakes, 2020)

materials with positive moduli, the classical bounds on
Poisson’s ratio can be exceeded. The reason for this is that
the proof of the bounds assumes that changes in volume and
changes in shape are independent. In chiral solids, even if they
are directionally isotropic, squeeze and twist deformation are
coupled via Cosserat freedom (Lakes and Benedict, 1982);
see Sec. III.B.2. An analysis (Lakes and Benedict, 1982) and
an experiment (Lakes and Huey, 2024) showed that if the
specimen is not too large, this coupling allows Poisson’s ratios
outside the classically allowable range even for a positive
shear and bulk modulus. Volume and shape changes are no
longer independent in such materials, in contrast to the
assumptions made in demonstrating a range of Poisson’s ratio
from assumed positivity of the moduli.

IV. ACTIVE AND NONCONSERVATIVE MATERIALS

Perfect elastic and dielectric materials are an idealization.
Actual materials will dissipate energy (viscoelasticity or
dielectric relaxation) and convert it into heat. Active materials
are provided with a source of energy that is not subsumed in

the elastic or dielectric analysis. Materials not usually clas-
sified as active also may release such energy during annealing
or physical aging or in phase transitions. Such materials are
nonconservative with respect to the field variables used (stress
and strain for elastic materials, electric field and polarization
for dielectrics). The total energy is conserved when we
consider all energies.

A. Asymmetric modulus and compliance tensors

As an example of an effect of nonconservative material,
consider stress strain relations (see Sec. III), including elasticity.
For materials that are nonconservative with respect to

mechanical energy, description by a strain energy function is
inapplicable. The modulus tensor is asymmetric with respect
to the first and second pairs of indices, Cijkl ≠ Cklij, or for the
compliance tensor (the inverse of the modulus tensor),

Sijkl ≠ Sklij: ð10Þ

This is the case for viscoelastic materials, in which modulus
and compliance depend on frequency (Rogers and Pipkin,
1963; Day, 1971). There is no effect of viscoelasticity on the
symmetry of the modulus tensor if the material is isotropic
or cubic. If the material has less symmetry (for example, it is
orthotropic or axisymmetric), the modulus or compliance
can be asymmetric if there is dissipation or gain. Although
dissipative materials and materials with gain are called non-
conservative, the total energy is conserved. Only the elastic
energy is nonconservative.
This sort of asymmetry gives rise to inequalities in

Poisson’s ratios that would be equal in the perfectly elastic
case (Rogers and Pipkin, 1963). Specifically, S2211¼−ν12=E1

and S1122 ¼ −ν21=E2. Suppose that the stiffness values are
equal in a transversely isotropic solid: E1 ¼ E2. The Poisson’s
ratios are unequal, with an unequal dependence on time or
frequency; they can be measured to reveal the asymmetry
associated with nonconservative damping or gain. For ortho-
tropic materials the corresponding moduli or compliances as
well as the Poisson’s ratios need to be measured to obtain all
the elastic constants.
The asymmetric compliance matrix for an orthotropic

material may be represented as follows for a nonconservative
material. The compliance elements are represented in terms
of the technical constants the Young’s modulus E, the shear
modulus G, and the Poisson’s ratio ν for physical insight.
There are 12 independent compliance elements: three axial
compliances 1=E, three shear compliances 1=G, and six more
related to Poisson’s ratio,

S ¼

0
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FIG. 7. Relation between the negative Poisson’s ratio ν and
negative stiffness. Shown is a map of bulk modulus K vs shear
modulus G Negative moduli violate the assumption of positive
definite strain energy, but a negative Poisson’s ratio down to −1
is consistent with that assumption. Adapted from Wang and
Lakes, 2005.

Roderic S. Lakes: Colloquium: Materials that exceed classical …

Rev. Mod. Phys., Vol. 97, No. 2, April–June 2025 021002-9



Wood, which is orthotropic, has long been known to exhibit
an asymmetric compliance matrix (Neuhaus, 1983; Hering,
Keunecke, and Niemz, 2012; Ozyhar, Hering, and Niemz,
2013) by virtue of its viscoelastic response. A similar
asymmetry of the modulus and compliance is anticipated
if a material is provided with an external power source so
that it exhibits gain rather than loss. If the orthotropic
material is elastic, there is a conserved strain energy density
such that the matrix is symmetric and there are only three
independent Poisson’s ratios and a total of nine independent
elastic constants.

B. Active materials with gain: Negative damping

At times, it has been expedient to hypothesize about
abstract systems with active energy input to obtain odd effects
as reviewed in Sec. IV.E or non-Hermitian effects as in
Sec. IV.F. In contrast to such studies, materials and systems
that are experimentally observed to be active or otherwise
nonconservative are reviewed here.

1. Biological materials

Living tissues have a metabolic power source. They are the
original active materials. Biological materials may in some
contexts be interpreted using the continuum concepts that
we have discussed. Living cells and tissues including cells
in the hearing organ of the inner ear are active materials
(Lau et al., 2003). Ear cells can have negative damping (Gold,
1948; Kemp, 1978) and negative stiffness (Martin, Mehta,
and Hudspeth, 2000; Hudspeth, 2014). Amplification of
signals within the ear allows great sensitivity to sound.
Amplification also neutralizes the damping associated with
the fluidic environment in the tissue and permits the ear to
discriminate frequencies that are close together. Musical
perception requires such discrimination. The ear can also
emit pure tones.
In muscle, which is active, the force depends on both the

stretch and on control via the nerves of the animal or human.
During contraction, muscle emits a low frequency sound
(Oster and Jaffe, 1980).

2. Designed materials and systems

Among the most familiar human-made systems with gain
are lasers, which have been with us for a long time (Maiman,
1961a, 1961b). Lasers provide a medium that amplifies
light; the maser is a counterpart that amplifies microwaves
(Schawlow and Townes, 1958). There are acoustic counter-
parts in which ultrasonic waves undergo amplification rather
than attenuation. Such amplification occurs in semiconductors
provided with an electric current (Hutson, McFee, and White,
1961; White, 1962; Toxen and Tansal, 1963). Sound or
ultrasound will be emitted unless there is sufficient damping
to compensate. Amplification of sound corresponds to a
negative mechanical damping. More broadly, one may con-
sider “excitable media” as materials in which a dissipation
of energy is compensated for by a supply of power (Markus,
Kloss, and Kusch, 1994).

C. Stabilization via energy flux

1. Stabilization of negative stiffness

To stabilize an object with negative stiffness (see
Sec. III.A.2), a source of power rather than an internal energy
can be envisaged. Negative spring constants can be stabilized
in articulated groups of pipes carrying moving fluid
(Thompson, 1982). Because a power source is used to move
the fluid, an assumption of constant internal energy is not
applicable. The flow of fluid in the pipes is nonequilibrium
and irreversible.

2. Stabilization of extreme stiffness

Extremely high stiffness was achieved in composites with
negative stiffness inclusions under metastable conditions,
as discussed in Sec. III.A.3. Stored energy facilitated the
negative stiffness. Stable singular stiffness was reported in a
set of hinged pipes carrying moving fluid (Thompson, 1982).
Extreme high stiffness is attainable in stable form in active
systems with energy flux (Lakes, 2012b). The energy flow
was modulated by the applied force in two experimental
modalities: (i) electric current into a piezoelectric disk was
modulated by contact force on a prismatic contact point and
(ii) thermal flow into a chamber of granular bimaterial short
helices was modulated by contact force on the granules. All
materials exhibit at least one coupled field effect (see Sec. V),
so the concept can be generalized.

D. Negative capacitance and permittivity

Electrical capacitance and permittivity are usually consid-
ered to be positive. As in elasticity, positive definiteness of
the electrical energy implies that the capacitance is positive
and that the dielectric permittivity is positive. The energy U
stored in a capacitor of capacitance C with applied voltage v
is U ¼ ð1=2ÞCv2.
However, a positive definite energy is an assumption about

the system or material. Negative capacitance can occur if an
internal source of energy or power is provided. Negative
capacitance in feedback systems with amplification has long
been known. Negative capacitance has been used to neutralize
some of the positive capacitance of transducers (Forward,
1979) in order to improve their damping properties (Fukada
et al., 2004). A discrete feedback amplifier that provides
negative capacitance is illustrated in Fig. 8. The capacitance at
the input is C ¼ −C0ðR2=R1Þ, with C0 the feedback capaci-
tance and R1 and R2 the resistances. The resistor R0 serves to
control the frequency response for the intended purpose of
controlling damping of piezoelectric polymers. The system is
stable provided that the absolute value of C is less than that of
the source capacitance connected to the input (Fukada et al.,
2004). The amplifier is an active circuit that must be suppled
with power from an external source, as indicated by the
�15 volts in Fig. 8.
Negative incremental capacitance was predicted to occur in

ferroelectric materials in accordance with the Landau theory
of phase transformations (Landau and Khalatnikov, 1954).
Negative capacitance was inferred in ferroelectric devices
(Salvatore, Rusu, and Ionescu, 2012) and in ferroelectrics
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(Appleby et al., 2014). Negative capacitance was used in
superlattices to achieve extremely large energy storage density
combined with high power density in microcapacitors
(Cheema et al., 2024).
The refractive index depends on the dielectric permittivity

and the magnetic permeability of the material. Negative
refractive index has been achieved via resonating constituents
in materials, as discussed in Sec. VII.

E. Odd material property tensors

Odd material property tensors are asymmetric. Tensors
describing dielectric permittivity are symmetric if there is a
conserved energy density function (Nye, 1976). Tensors
describing coupled transport processes such as flow of heat
and electricity are symmetric if the system obeys time-reversal
invariance (Onsager, 1931a, 1931b). Materials and systems
that do not obey these assumptions may exhibit asymmetric
tensor properties.
Odd viscosity refers to an antisymmetric part of the

viscosity tensor that is allowable in systems that are not
invariant to time reversal (Avron, 1998). The Onsager rela-
tions imply that the symmetric part of the fourth rank viscosity
tensor is even under time reversal and that the asymmetric part
is odd (Onsager, 1931a, 1931b). To have nonzero odd terms,
time-reversal invariance must be broken.
Avron (1998) demonstrated that odd effects cannot occur

in 3D isotropic viscous or elastic materials but that they are
possible in 2D isotropy. An analysis was adduced of possible
odd effects in a quantum Hall fluid and in superfluid He3.
Moreover, experiments were suggested to demonstrate the
effects. For example, a rotating object in a fluid experiences
drag from the usual viscosity and normal pressure from the
odd terms (if any). Asymmetry of the viscosity or modulus
tensor can be an aspect of nonconservative systems, including
those with a power source.
If internal degrees of freedom are excited by an external

power source, time-reversal symmetry is broken. An anti-
symmetric diffusivity, denoted odd, emerges in a chiral
random walk model in an active medium with an external
supply of energy (Hargus, Epstein, and Mandadapu, 2021).

The diffusivity tensor for such materials contains both
a symmetric and an antisymmetric component. Molecular
dynamics simulations of chiral active matter indicate that such
effects can occur. Specifically, a directionally isotropic chiral
active fluid composed of torqued dumbbells was considered.
Since there is no rank-2 tensor in three dimensions that is
both isotropic and antisymmetric, attention was given to two-
dimensional diffusion. In a related study, shear and odd
viscosity values were inferred in a model system consisting
of actively torqued dumbbells using molecular dynamics
simulations (Hargus et al., 2020).
Odd elasticity refers to asymmetry of the modulus or

compliance tensor and the appearance of additional material
constants. As with odd viscosity, such asymmetry is permis-
sible in nonconservative systems and materials.
Asymmetry in the compliance tensor [Eq. (10)] has been

observed experimentally and has long been known in wood,
which is orthotropic and viscoelastic. All 12 compliance
components have been determined experimentally versus
time for various woods (Neuhaus, 1983; Hering, Keunecke,
and Niemz, 2012; Ozyhar, Hering, and Niemz, 2013). The
substantially different time dependence of the nondiagonal
elements of the compliance matrix [Eq. (11)] illustrates the
odd nature of the viscoelastic character of wood though the
terminology odd was not used. There are 12 independent
compliances, in contrast to nine for orthotropic elastic solids
governed by a conserved energy density.
A conceptual model of odd elasticity was presented with

an analysis of hypothetical active solids as lattices with rib
elements supplied with external power (Scheibner et al.,
2020). It was suggested that the dynamical matrix is non-
Hermitian; see also Sec. IV.F.
The origin of additional stiffness constants in active solids

as well as in dissipative solids differs from that of gener-
alized continuum theories such as Cosserat elasticity, dis-
cussed in Sec. III.B.2, in which an internal energy function is
assumed to exist. Asymmetry of the modulus or compliance
tensor, if there is any, is independent of the asymmetry of the
stress tensor.
In contrast to viscoelastic materials that dissipate energy,

a source of energy is assumed to be provided in active
materials. There is a hysteresis loop in cause versus effect
for both viscoelastic materials that exhibit positive damping
and materials with a power source that exhibit negative
damping. The stress depends on the path of deformation
for both dissipative and active materials. The hysteresis,
whether dissipative or active, can be expressed as the
imaginary part of a complex modulus. Because physical
property functions are expected to be analytic, there must be
frequency dependence of modulus via the Kramers-Kronig
relations. The frequency dependence can be tuned for both
kinds of materials.
Because elasticity by definition entails independence of the

path of deformation, odd elasticity is really not elasticity. It
nonetheless involves an asymmetry of the modulus tensor
with respect to pairs of indices. Viscoelastic damping also
suffices to provide an asymmetric modulus or compliance
tensor, as has been observed.
The analysis of Rogers and Pipkin (1963) for asymmetry of

the modulus in nonconservative materials does not distinguish

FIG. 8. Negative capacitance via a feedback amplifier.
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gain from loss. Therefore, asymmetry of the modulus tensor in
odd elasticity (or of the viscosity tensor) will not occur in
isotropic or cubic materials. Because it is a tensor property,
it is restricted to materials of axisymmetric or lower symmetry
(Rogers and Pipkin, 1963; Avron, 1998). In that vein,
isotropic examples include moments as well as forces
(Scheibner et al., 2020). Distributed moments are absent in
classical elasticity even when the modulus is asymmetric
owing to the absence of an energy function. In classical
elasticity the stress is symmetric even if the modulus or
compliance has odd components. Distributed moments and
associated asymmetric stresses can occur in magnetic materi-
als and in a variety of Cosserat solids, but not in classically
elastic solids. In active materials the moments are nonetheless
in contrast to the usual Cosserat elasticity in which an internal
energy function is assumed to exist.
In a two-dimensional model material, Lin et al. (2023)

showed that the odd moduli are proportional to the non-
equilibrium force and dissipation coefficients. Results were
interpreted in the context of the Onsager principle and
nonreciprocity. Either positive or negative values of a driving
torque variable will suffice to break time-reversal symmetry
and allow odd moduli. A microscopic Hamiltonian theory,
valid in both two and three dimensions (Markovich and
Lubensky, 2021), showed that odd viscosity is present in
any system with globally or locally aligned spinning compo-
nents. Such a system is illustrated in Fig. 9. No dissipation is
required to obtain the odd terms, but a material provided with
external torques is active.

F. Non-Hermitian systems and materials

Non-Hermitian Hamiltonians were originally introduced
in an abstract sense in quantum mechanics (Bender and
Boettcher, 1998). A material describable by this sort of
Hamiltonian can exhibit a phase transformation as it is tuned.
A Hermitian matrix has the property that the transposed
complex conjugate matrix is equal to the original matrix. In
the integral representation of an operator F upon a function ψ ,
the operator is Hermitian if

R ðFψÞ�ψdτ ¼ R
ψ�Fψdτ.

It is believed that the Hamiltonian must be Hermitian in
order to ensure that the energy spectrum of the eigenvalues
of the Hamiltonian is real and that probability is conserved

in time. This assumption is sufficient to guarantee these
desired properties. It has been argued that it is not a necessary
condition (Bender, Brody, and Jones, 2003) and that the
weaker condition of parity-time (PT ) invariance is the actual
necessary condition for a valid quantum mechanical theory.
Parity refers to invariance under inversion of position and
momentum. An open system or material with externally
supplied energy does not necessarily entail proper non-
Hermitian PT invariance.
To realize non-Hermitian materials physically, optical

systems in one and two dimensions, with regions of gain
and loss, that are describable by Schrödinger-like equations
were analyzed (Makris et al., 2008). To achieve gain, one
requires a power source. Non-Hermitian materials can also be
realized in systems that contain parts with different dissipation
but no gain or amplification.
Eigenvalues as well as the corresponding modes of the

system coalesce as a tuning parameter is varied. The coa-
lescence of eigenvalues, which may correspond to frequen-
cies, is called an exceptional point. Such behavior can be
exploited in devices. A discrete non-Hermitian accelerometer
with an improved signal-to-noise performance was developed
and tested; eigenvalues and their corresponding eigenvectors
coalesced (Kononchuk et al., 2022). This device contains
two coupled resonators with gain, loss, inductance, and
capacitance balanced to achieve the required PT symmetry.
Enhancement of actuation force in a discrete device was
attained using a designed non-Hermitian system containing
two coupled tuned mechanical resonators (Gupta et al., 2023).
A natural frequency splits into two frequencies as coupling
is tuned.

G. Active chirality

As we saw in Sec. III.B.3, piezoelectricity, in which
property coefficients comprise a third rank tensor, requires
chirality, but classical elasticity in which the modulus or
compliance is fourth rank cannot accommodate chirality. Even
if the modulus or compliance is asymmetric with respect to
pairs of indices (Sijkl ≠ Sklij), as in nonconservative materials,
it is still fourth rank and cannot accommodate chirality. Chiral
elastic effects do occur; they require a theory with more
freedom than classical elasticity to be understood.
Because chirality entails noninvariance to inversion of all

three coordinates, chiral materials are of interest in the context
of non-Hermitian materials and systems. In addition, biologi-
cal materials and systems are both active and chiral, so efforts
to imitate them often make use of chirality.
A chiral granular material comprised of chiral wires (see

Fig. 4) was made and studied (Tsai et al., 2005). The granules
rotated in a preferred direction when excited by vertical
vibration. This is one of the few materials that allow angular
momentum to be transmitted to the bulk of the material.
Others include ferrofluids and liquid crystals subjected to a
rotating magnetic field.
Groups of thousands of spinning and swimming starfish

embryos spontaneously assemble into ordered patterns
(Tan et al., 2022). The organization is called a chiral crystal.
The pattern can persist for tens of hours. Control is via the
embryos’ internal development. The embryos are chiral and

FIG. 9. Model system of fluid with odd viscosity based on
inclusions given angular momentum via an external field.
Adapted from Markovich and Lubensky, 2021.
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spin about an axis. Self-sustained oscillations were observed.
It was suggested that observed lattice defects and self-
sustaining waves provide evidence of odd effects. It was
pointed out that systems with nonreciprocal interactions allow
energy to be extracted from quasistatic cycles.
A two-dimensional chiral liquid consisting of spinning

colloidal magnets was made by Soni et al. (2019). When
excited by an external magnetic field, surface flows suggest
odd or Hall viscosity, which has been analyzed but has been
experimentally elusive. In another ferromagnetic colloid,
coarsening and phase separation were observed to be
dependent on the frequency of the driving magnetic field
(Massana-Cid et al., 2021).

V. COUPLED FIELDS

Most materials exhibit coupling between multiple field
variables. Coupling can occur between mechanical, electrical,
thermal, magnetic, and humidity variables, depending on the
material. Coupled fields are of interest in the context of basic
science and for their role in sensors, actuators, and energy
conversion devices. Equilibrium thermodynamic analysis is
appropriate for thermal expansion, piezoelectricity, and pyro-
electricity when studied under ideal conditions (Nye, 1976).
In actual materials coupled fields give rise to nonequili-

brium viscoelastic dissipation. Thermoelastic coupling causes
temperature variation from deformation. Heat flows between
the object and the environment or between crystals and other
heterogeneities in the material, dissipating energy (Zener,
1948; Nowick and Berry, 1972). In piezoelectric materials
electric conduction dissipates energy from deformation
induced polarization. Deformation also influences the diffu-
sion of atoms. Coupling with the chemical potential has
been predicted (Larché and Cahn, 1985) and observed (Shi,
Markmann, and Weissmüller, 2018).
Energy relations between dissimilar atoms in alloys can

give rise to uphill diffusion such as that occurring in spinodal
decomposition (Krishna, 2015). For example, fluctuations in
composition in an initial single-phase state of an alloy such as
ZnAl grow to form regions of segregated phases (Mainville
et al., 1997). Such materials exhibit viscoelasticity (Nowick,
1951). Alloy from rapidly cooled melt retains the liquid’s
mix of atoms. This solid is metastable. Warming the solid
triggers segregation of Zn-rich and Al-rich phases while
releasing heat. Internal and external coupled field variables
can give rise to dissipative response or metastability.

A. Symmetry of even-rank tensors

The thermal expansion tensor is symmetric because the
strain is symmetric by definition. Symmetry of even-rank
tensors that govern permittivity, elasticity, and magnetic
permeability follows from the assumption of a conserved
energy density that pertains to reversible processes between
equilibrium states (Nye, 1976). As we have seen, materials
with stored energy and materials that dissipate energy are not
describable by a conserved energy density.
Conduction of heat or electricity and other transport

processes require nonequilibrium thermodynamics. Tensors
that govern coupled processes such as heat and electrical flux

obey reciprocity via the Onsager relations (Onsager, 1931a,
1931b) owing to time-reversal symmetry. The Onsager rela-
tions also require transport coefficient tensors such as thermal
conductivity and diffusion to be symmetric, but the inference
is more indirect (Casimir, 1945; Nye, 1976). The system or
material may in fact not obey time-reversal symmetry as in
active materials, materials exhibiting the Faraday effect, and
other materials and systems.

B. Thermal expansion

Materials ordinarily expand when heated. The second rank
thermal expansion tensor is the ratio of expansion strain to
temperature change (Nye, 1976). The physical cause is a slight
anharmonicity or nonlinearity in the force between atoms
in the material. Contraction of a material on heating seems
counterintuitive because one might expect atoms to occupy
more space as their vibration amplitudes increase with heating
(Barrera et al., 2005). That view is sensible in the context of an
analysis of the effect of vibration on the mean interatomic
bond length in the presence of a slight nonlinearity. Negative
thermal expansion, though counterintuitive, is allowable
within thermodynamic bounds.
Exceptions with negative expansion are known, such as

zirconium tungstate (Mary et al., 1996), in which the unit cell
has a complex structure. This material is structurally cubic and
has an isotropic thermal expansion tensor. Negative expansion
occurs in other crystalline solids (Evans, 1999; Barrera et al.,
2005), including those with a complex unit cell. Further
materials include Si and Ge and other tetrahedrally bonded
crystals at low temperatures, β quartz at high temperatures,
and some ceramics and zeolites with framework structures.
Negative expansion can occur near phase transitions (Evans,
1999). For example, negative expansion over a wide range of
temperature occurs in the ferroelectric lead titanate PbTiO3

and attains a peak of large magnitude near the phase
transition temperature (Mikhaleva et al., 2012). Phase
transitions also allow negative stiffness (see Sec. III.A.2),
and other negative properties not permissible in standard
thermodynamic analyses.
In some materials relative motion orthogonal to the inter-

atomic bonds considered can cause thermal contraction.
Thermal expansion can be anisotropic in some single crystals
and composites. For example, single crystals of Ag3CoðCNÞ6
and Ag3FeðCNÞ6 have a large positive expansion in one
direction and a large magnitude of negative expansion in
another direction (Goodwin and Kepert, 2005).
As for composite materials, classical bounds on the

expansion of a composite have been derived (Cribb, 1968).
The theoretical expansion can be no higher than that of the
constituent with the highest expansion and no lower than that
of the constituent with the lowest expansion. It is assumed that
the constituents have a perfect fit. It is tacitly assumed that the
system is initially in a state of minimum energy.
These bounds for composites can be exceeded if either

assumption is relaxed. Expansion can be arbitrarily large
positive or negative (Lakes, 1996), tunable by geometry in rib
lattices that contain ribs with two materials with different
expansions (Lakes, 2007). In contrast to the assumptions
made in the bounds, the constituents are not bonded on all
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surfaces. No special chemical composition is required, just a
dissimilarity in expansion of the two layers in each rib. The
lattices can be dense in two or three dimensions. Rib lattices
with bimaterial ribs are illustrated in Fig. 10.
Lattices can be made with multiple extreme properties.

For example, one can obtain a controllable extreme thermal
expansion as well as a negative Poisson’s ratio, as illustrated
in Fig. 11. This lattice also exhibits Cosserat elastic properties
and hence provides a reduction in stress concentration around
holes and other defects. Materials with multiple designed
properties are called multifunctional.
Zero expansion is of considerable practical interest. For

such purposes some alloys, such as Invar and glasses, are
known with near zero expansion. The tunable rib lattices can
be designed with zero expansion, but they are compliant.
Rib lattices with zero expansion incorporating cells with two
kinds of ribs, each of which is made with a different material,

have been developed (Steeves et al., 2007). These lattices offer
improved stiffness combined with near zero expansion. In
composites with particulate inclusions, extreme positive or
negative thermal expansions can be achieved provided that the
inclusions have negative stiffness, which is possible if there is
stored energy (Wang and Lakes, 2001) or a power source.

C. Piezoelectricity and pyroelectricity

Piezoelectric materials generate an electric polarization
when subjected to a mechanical stress and undergo a strain
(deformation per length) when subjected to an electric field
(Nye, 1976). The effect is due to an asymmetric distribution of
electric charge in the material.
In piezoelectricity the direct piezoelectric effect represents

sensitivity to stress σij, giving rise to an electric displacement
vector Di and hence a charge density via the third rank direct
effect sensitivity tensor ddijk (in pC=N); see Eq. (12). The
Einstein summation convention for repeated indices is used.
The electric displacement is also related to the electric field Ej

via the dielectric tensor Kij. The converse piezoelectric effect
sensitivity is the ratio of strain ϵij to the imposed electric
field Ek, or the ratio of deformation displacement to imposed
voltage, in pm/V via Eq. (13),

Di ¼ ddijkσjk þ KijEj þ ppyr
i ΔT; ð12Þ

ϵij ¼ ST;Eijklσkl þ dckijEk þ αexpij ΔT; ð13Þ

ΔS ¼ αpzcalij σij þ pelectr
i Ei þ ðCσ;E=TÞΔT; ð14Þ

in which αexpij is the thermal expansion, αpzcalij is the piezo-
caloric effect, and pelectr

i is the electrocaloric effect.
For some materials the electric displacement also depends

on the temperature change ΔT via the pyroelectric effect ppyr
i

in Eq. (12). The pyroelectric effect was known to the ancient
Greeks. Heated rocks containing tourmaline crystals were
observed to attract dust and other debris.
The strain ϵij also depends upon the stress σkl via the elastic

compliance ST;Eijkl at constant temperature T and electric field E,
and upon the temperature change ΔT via the thermal expan-
sion αexpij (Nye, 1976). The heat capacity per volume at

constant stress and electric field E is Cσ;E in Eq. (14), with
ΔS the entropy change.
Bounds on properties of piezoelectric composites are

known, but they can be exceeded in these materials, which
do not obey the assumptions made in the bound analysis
(Bisegna and Luciano, 1996). For example, giant piezoelectric
effects, as with giant thermal expansion, can be obtained in
lattices of bimaterial strips (Lakes, 2014) and in composites
with inclusions of negative stiffness (Wang and Lakes, 2001).
Large piezoelectric effects can also be obtained in structures
with discrete negative stiffness elements (Kalathur and Lakes,
2016). Lattices as well as structures with flexible bender
elements are, however, far more compliant than the usual
piezoelectric ceramics. A giant piezoelectric response was
obtained in systems provided with an external power source
(Lakes, 2012a). In this experiment flow of heat was modulated

FIG. 10. Lattices with bimaterial ribs for controllable thermal
expansion or controllable piezoelectric sensitivity. Left sketch: 2D
hexagonal lattice. Right sketch: 3D lattice cell. Adapted from
Lakes, 2007.

FIG. 11. Lattice with bimaterial ribs for controllable thermal
expansion or controllable piezoelectric sensitivity. A chiral lattice
that also has a Poisson’s ratio −1 (Prall and Lakes, 1997) and is
Cosserat elastic (Spadoni and Ruzzene, 2012) is displayed.
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by variable contact in a granular layer. By this process electric
polarization of pyroelectric origin contributes to stress-
generated electric polarization and hence a piezoelectric
response. It has long been known that some piezoelectric
materials are sensitive to the gradient of stress, as well as to
stress itself (Bursian and Zaikovskii, 1968; Bursian and
Trunov, 1974),

Di ¼ ddijkσjk þ dijkl
∂σjk
∂xl

. ð15Þ

These effects involve a fourth rank coupling tensor term dijkl
as in Eq. (15), in addition to the previously considered effect
of a tensor of third rank. The effects can be substantial in
ferroelectric materials and in materials near a phase transition.
In recent parlance materials exhibiting gradient piezoelec-
tricity have been called flexoelectric. This class of materials
is of interest in the context of the prediction of large effects
in BN sheets (Naumov, Bratkovsky, and Ranjan, 2009).
Potential applications in nanogenerators could generate
power from ambient disturbances. Gradient sensitivity in
piezoelectricity is related to gradient sensitivity in general-
ized elasticity such as Cosserat elasticity, which is discussed
in Sec. III.B.2. In both cases there is a characteristic length
in the continuum theory associated with a physical length
scale in the microstructure.

D. Elastocaloric, barocaloric, and electrocaloric effects

The elastocaloric effect (or piezocaloric effect) is the
coupling between stress and entropy via αpzcalij in Eq. (14).
It is the converse of thermal expansion. If the stress is applied
sufficiently rapidly, the temperature changes. Similarly, the
barocaloric effect is coupling between pressure and entropy.
The electrocaloric effect gives rise to an entropy change from
an electric field via pelectr

i in Eq. (14). It is the converse of
the pyroelectric effect. These effects have long been known.
Recently, there have been many studies of these effects
motivated by their potential in solid-state refrigeration.
Large values for these quantities are found when the material
is in the vicinity of a phase transition (Mañosa, Planes, and
Acet, 2013). Materials include ferroelectrics such as BaTiO3,
LaFeSi compounds, and shape memory alloys. Giant electro-
caloric effects were observed in thin film lead zirconate
titanate PbZr0.95Ti0.05O3 at temperatures near the Curie phase
transition (Mischenko et al., 2006). Although properties can
be extremely high, they do not directly violate any thermo-
dynamic bounds.

E. Hall effect

Apply an electric current through a conductor. Then impose
a magnetic field orthogonal to the current. A transverse
voltage appears across the conductor orthogonal to both the
current and the magnetic field. That is the Hall effect (Hall,
1879). It is caused by deflection of the charge carriers in
the current by the magnetic field. The Hall effect may be
represented via an asymmetric second rank conductivity
tensor. The sign of the transverse voltage allows inference
of the sign of the charge carrier. The magnitude of the voltage

determines the number n of charge carriers of charge q per
volume. The Hall coefficient is RH ¼ Ey=jxBz, in which the
current density is j, the applied magnetic field is B, and the
resulting transverse electric field is Ey (Lovett, 1989; Preston
and Dietz, 1991). The Hall effect is first order in magnetic
field; the magnetoresistance is second order (Lovett, 1989).
The Hall coefficient may be written as RH ¼ 1=nq. This is an
exact result with no apparent freedom. However, it is assumed
that the material is homogeneous.
If that assumption is relaxed, it is possible to envisage

heterogeneous structures in which the sign of the Hall
coefficient is reversed in two dimensions (Briane, Manceau,
and Milton, 2008) and three dimensions (Briane and Milton,
2009b). The structures consist of interlocking rings, as
illustrated in Fig. 12. They resemble chain mail used in
ancient armor.
Giant Hall effects of unbounded magnitude are possible

in hierarchical laminated composites with multiple length
scales (Briane and Milton, 2009a). The laminate in two
dimensions consists of columnar elements that act as
batteries in series. The laminate in three dimensions is of
rank 3 with three length scales, and it can provide isotropic
properties. If one phase tends to zero conductivity, it
becomes void space. The rank-3 laminate is based on a
laminate used in the analysis of bounds on the conductivity
of polycrystalline materials (Schulgasser, 1977). Laminates
that themselves contain laminates were originally concep-
tualized by Maxwell (1873) for an analysis of conductivity.
Such a laminate is illustrated in Fig. 13.

F. Faraday effect

The Faraday effect is the rotation of linearly polarized light
in the plane of polarization due to the action of an external
magnetic field on the material through which the light passes.
The effect can be interpreted via coupling of electrical
permittivity to a magnetic field in materials. This magneto-
optic effect can be incorporated into an asymmetric second

FIG. 12. Chain mail structure for control of the Hall effect. From
Whyte, 1998.
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rank permittivity tensor (Pershan, 1967) with complex
off-diagonal terms [Eq. (16)] proportional to the applied
magnetic field,

ϵij ¼

0
B@

ϵ1 −iϵg 0

iϵg ϵ1 0

0 0 ϵ1

1
CA. ð16Þ

The magnetic field provides a violation of time-reversal
invariance such that the asymmetry in the properties can
occur (Onsager, 1931a, 1931b). The materials are called
gyrotropic.
As for designed heterogeneous materials, magneto-optic

effects can be obtained via an array of toroid coils (Marinov
and Fedotov, 2023). Gyrotropic materials are discussed further
in Sec. VI.C.

VI. RECIPROCITY AND NONRECIPROCAL MATERIALS

There are several kinds of reciprocity. For waves reciprocity
states that the frequency response functions between any
two points remain the same after source and receiver are
exchanged. Reciprocity in acoustics can be traced to a 1878
treatise on sound by Rayleigh. If sound waves are generated
at a point A, the resulting velocity potential at another point B
is the same in both magnitude and phase, as it would have
been at A had B been the source of sound (Potton, 2004).
More simply stated, if I can hear you, then you can hear me.
Demonstration of reciprocity makes use of assumptions of
linearity and time-reversal invariance.
Nonreciprocal materials and systems can be developed if

one introduces chirality or an asymmetric dielectric tensor
as in the Faraday effect (Potton, 2004), or nonlinearity or
time dependent constitutive properties (Nassar et al., 2020).
A one-way mirror may come to mind in this context.
Actually, such mirrors are not truly one-way. They are
partially reflective mirrors that are fully reciprocal and have
equal partial reflectivity in both directions. They appear to

be one-way because they are set up with one room brightly
illuminated and the observer situated behind the mirror in
another room that is darkened. Some aspects of reciprocity
are now discussed.

A. Reciprocity in coupled fields

Reciprocity in coupled field effects such as thermal expan-
sion and piezoelectricity refers to equality between coeffi-
cients that describe different phenomena (Nye, 1976). For
example, the coefficient of thermal expansion αexpij , which
quantifies the ratio of expansion strain to applied temperature
change in Eq. (13), and the coefficient αpzcalij of piezocaloric
effect in Eq. (14), which expresses the ratio of entropy change
to applied stress, refer to different phenomena. The same
symbol αij is usually used for both because of the assumption
of reciprocity. The piezocaloric effect may be demonstrated by
rapidly (adiabatically, ΔS ¼ 0) applying a stress to a material.
Before there has been time for heat flow to occur, one observes
that the material has changed temperature in response.
Reciprocity means the coefficients for these different phe-
nomena are the same.
For piezoelectric materials reciprocity refers to equality

between the coefficients for the direct effect [Eq. (12)]
and those for the converse effect [Eq. (13)]: dckij ¼ ddkij.
Reciprocity of piezoelectric coefficients is so universally
accepted that the same symbol d is used for both sensitivity
tensors. Reciprocity is shown (Nye, 1976) using the assump-
tions of equilibrium and the existence of an energy function.
Assumption of a conserved function of energy is inappli-

cable in viscoelastic materials that dissipate energy or in
active materials for which a power source is provided.
Some piezoelectric materials, such as quartz, exhibit minimal
damping, but others, such as lead metaniobate, exhibit
substantial damping.
If an external source of energy flux is provided, large

nonreciprocal effects in piezoelectricity occur (Faust and
Lakes, 2015). In this experiment thermal flux was modulated
by the applied force. Nonreciprocal effects gave rise to an
enhancement of factor of 5 in sensitivity.
Energy flux entails a nonequilibrium condition, necessitat-

ing nonequilibrium thermodynamics, including the Onsager
relations, for analysis. The Onsager reciprocity relations stem
from the principle of microscopic reversibility (Onsager,
1931a, 1931b). An example is given of coupled flow of heat
and electricity in which cross terms that represent thermo-
electricity obey reciprocity relations. It is acknowledged that
microscopic reversibility is less general than the fundamental
laws of thermodynamics. The principle of dynamical revers-
ibility does not apply in the presence of external magnetic
fields or Coriolis forces. The Onsager reciprocal relations then
break down.

B. Reciprocity in elasticity

In elasticity, we have the Maxwell-Betti reciprocity relation
(Maxwell, 1864) (Betti, 1872). Force applied to the elastic
solid at point a is called Fa, and uba is the displacement at
point a caused by a force at point b. Force applied to the

FIG. 13. Hierarchical laminate after Maxwell (1873).
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elastic solid at point b is Fb, and uab is the displacement
at point b caused by a force at point a. The reciprocity
condition is Fauba ¼ Fbuab. This form of reciprocity can be
regarded as intuitive: if one presses an object on side A, the
other side B moves a certain amount. One expects that if one
presses side B with the same force, then side Awill move the
same amount (Coulais, Sounas, and Alu, 2017). Elastic
reciprocity is highly pertinent in the analysis and design of
many mechanical systems. The assumptions required to
demonstrate elastic reciprocity include time-reversal invari-
ance and reversibility. Linear elasticity is assumed.
Elasticity entails independence of time. If one assumes
linearity, energy arguments can be used to demonstrate
reciprocity (Sokolnikoff, 1946).
Nonreciprocal effects occur in lattice materials of ribs or

of connected polygon nodes that are in a nonlinear regime on
the threshold of instability (Coulais, Sounas, and Alu, 2017).
Near an instability there will be irreversibility and nonlinear
hysteresis, so nonreciprocal effects are admitted. The lattice,
which resembles tilting square lattices with negative Poisson’s
ratio, is illustrated in Fig. 14. By analogy with electromagnetic
nonreciprocal devices such as isolators and circulators (which
depend on resonance), static mechanical nonreciprocity may
form the basis for future devices (Potton, 2004).
A composite hydrogel was reported to have mechanical

nonreciprocity owing to direction dependent buckling of
nanofillers made of graphene oxide sheets (Wang et al.,
2023). The sheets were unidirectionally oriented in a direction
to encourage buckling. The material, via its asymmetric
deformation, had the ability to induce the directional transport
of a variety of objects including small worms.

C. Gyrators and gyrotropic materials

The earliest gyrotropic systems were discrete electric circuit
elements (Tellegen, 1948). The gyrator gyrates a current i
into a voltage v, and vice versa. One can make a gyrator by
converting electrical oscillations to mechanical and back or
using ferromagnetic materials. For an electrical transformer,
i1 ¼ −ui2 and v2 ¼ uv1, but for a gyrator v1 ¼ −si2 and
v2 ¼ si1, with u and s constants representing the system.
Governing equations for gyrators resemble those for mechani-
cal gyroscopes. Ferromagnetic materials have been used to
make gyrators (Hogan, 1952). A gyrator can also be realized
by means of mechanically coupled piezoelectric and electro-
magnetic transducers, by means of the Hall effect in a square
plate of bismuth, or via electrical-electrical coupling through a
gyroscopic link. The gyrator violates reciprocity.

It has long been known that the Faraday rotation of the
plane of polarization in optics, which is represented by
off-diagonal terms in the permittivity, is antireciprocal. The
off-diagonal terms in the permittivity tensor are small in
comparison with the diagonal terms in most materials.
Recently, efforts have been made to design materials that
exhibit stronger effects. For example, heterogeneous gyro-
tropic structures were designed to enhance the effective
nonreciprocal behavior by reducing the contribution of the
diagonal susceptibilities using negative dielectric effects,
which are possible, as discussed in Sec. IV.D. The suggested
implementation is in the midinfrared region (Katsantonis
et al., 2023). A microwave gyrotropic lattice made of circuit
elements was presented by Wang et al. (2012). It does not
require an external magnetic bias. Strong Faraday-like effects
have been observed in simulations and experiments. The
effective medium was nonreciprocal.

D. Toroids

Toroidal windings of wire, which are illustrated in Fig. 15,
have long been used in electronics. They confine the magnetic
field resulting from current in the winding wire to the interior
of the torus and provide electromagnetic inductance. The
inductance can be increased by providing a magnetic core
within the toroid. Time varying current in a toroidal winding
does generate an electric field outside the torus via Maxwell’s
equations.
Electromagnetic fields associated with a wire helix

(solenoid) bent in a ring (toroid) were considered as a classical
analog to an “anapole” interaction that violates parity con-
servation in particle physics (Zel’Dovich, 1958). Anapole
refers to zero pole or without poles because the interaction is
not present in standard multipole expansions and cannot be
represented as a superposition of multipole terms. An anapole
moment in the nucleus of cesium leads to parity nonconser-
vation that was recognized in the context of electroweak field
unification (Wood et al., 1997). Parity nonconservation entails
the absence of mirror reflection symmetry; it is displayed by
objects with left- or right-handedness. Parity refers to invari-
ance under an inversion of position and momentum. Optical
spectroscopy experiments were done to reveal the effect in
cesium atoms.
Toroids have been of recent interest by virtue of their

unusual electromagnetic properties. For example, the strength
of their interaction with electric and magnetic fields depends
on the time derivatives of the fields rather than the field
amplitude alone. Toroidal multipoles are not incorporated into

FIG. 14. Nonreciprocal lattice based on nonlinear deformation.
Left image: undeformed. Right image: deformed. Adapted from
Coulais, Sounas, and Alu, 2017.

FIG. 15. Left image: toroid with wire loops. Right image: physi-
cal toroid with core.
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the usual multipole expansion. Solid materials that contain
toroidal magnetic order have been called ferrotoroids.
Piezoelectric materials do not obey spatial inversion sym-
metry, and ferromagnetic materials do not obey time-reversal
symmetry; materials with magnetic toroidal order disobey
both time-reversal and spatial inversion symmetry
(Papasimakis et al., 2016). Toroidal domains were observed
in an olivine crystal and have been explored in other materials.
Recently, it has been recognized that interactions between

toroidal currents could violate reciprocity. An experimental
study of optical activity in a chiral planar array of toroid coils
disclosed resonant effects at microwave frequencies and off-
diagonal gyrotropic terms in the permittivity (Papasimakis
et al., 2009). An array of toroid coils was analytically found
to behave as a reciprocal gyrotropic birefringent effective
medium (Marinov and Fedotov, 2023). Toroids in the sub-
wavelength regime exhibit a gyrotropic response resembling
optical activity. The winding of the wire around the toroid can
be done with a spiral character, but it need not be done that
way. The winding can be also done as an array of current loops
or as two spirals with the opposite sense. Chiral (unbiased)
gyrotropy is time-reversal symmetric and is therefore recip-
rocal (Caloz et al., 2018).
With toroids, optical activity can be achieved in which the

plane of polarization is rotated. Analysis has shown that
negative indices of refraction can be achieved in arrays of
toroids in a dielectric matrix (Marinov et al., 2007). In a study
of toroidal response (Kaelberer et al., 2010), the experimental
configuration made use of a 22-by-22 array of elements
consisting of four rectangular, electrically disconnected metal
wire loops embedded in a dielectric slab. The rationale
compared with an actual toroid was to avoid a dipole moment
from helical windings. Toroid winding could have been made
to avoid that with windings of opposite helicity. Toroidal
resonant effects were observed at microwave frequencies
of 14–17 GHz.

VII. RESONANCE AND WAVES

The simplest example of a negative property due to
dynamic effects is a discrete single degree of freedom system
with an inertia term and a restoring force term. Such systems
are studied in the context of differential equations. Physical
examples include a discrete mechanical system with a spring,
a mass, and a damper and a discrete electrical system with a
capacitor, an inductor, and a resistor. The phase angle between
cause and effect at frequencies above resonance approaches
180°, which corresponds to a negative ratio between effect and
cause. At resonance the system is compliant and the phase
angle is 90°. The compliance (effect divided by cause) at
resonance increases as the dissipation is reduced. Systems
with multiple degrees of freedom can exhibit antiresonances
corresponding to small values of compliance. Resonance at
acoustic and ultrasonic frequencies requires structure at scales
much larger than the atomic or molecular.
Negative properties have been reported in electromagnetic

materials that exhibit local resonances. Such properties have
been used to make lenses with unusual refractive properties
including negative refraction. Predictions based on a quasi-
static nonresonant condition do not apply.

A. Negative elastic properties

If a composite is envisaged with an array of mass-spring
resonators in cavities, effective mass density can be negative
(Milton and Willis, 2007). A negative effective elastic
modulus is also possible in composites with resonating
constituents such as spherical inclusions containing a dense
lead core surrounded by a shell of rubber (Sheng et al., 2003),
as well as an array of resonators based on cavities containing
fluid and an outflow channel (Fang et al., 2006). In contrast to
a negative modulus via stored energy or power supply (see
Sec. III.A.2), effects via resonance appear only at sufficiently
high frequency. Composites of this type have been considered
for acoustic sound shielding (Calius et al., 2009) and cloaking
(Milton, Briane, and Willis, 2006).

B. Negative refractive index

The refractive index governs the speed of waves and the
behavior of waves that interact with interfaces between
materials. Analyses of the behavior of lenses, windows,
and dielectric mirrors make use of the refractive index.
The concept of negative refractive index was presented

by Veselago (1967). Such materials have negative dielectric
permittivity and magnetic permeability. Because the square
of the refractive index n is given by the product of the
permittivity and permeability n2 ¼ ϵμ, it appears that for real
values the refractive index is not affected by simultaneously
negative permittivity and permeability. Refractive effects do
occur in relations that contain permittivity and permeability
separately.
It was anticipated that the effects could occur in plasmas

and gyrotropic materials in which the permittivity and
permeability are tensors, not scalars. Consequences of neg-
ative electric and magnetic properties in the refraction of
lenses were studied. For example, a flat plate made of negative
material is predicted to be capable of focusing waves. These
negative effects require dispersion (frequency dependence) of
wave speed. Negative refractive index was predicted to enable
improved lenses with resolution superior to the accepted
diffraction limit to be made (Pendry, 2000).
As for early physical embodiments, three-dimensional

electromagnetic lattices of intersecting straight wires devel-
oped by Bracewell (1954) and Rotman (1962) provided an
effective medium for waves with a wavelength that was
sufficiently long compared with the lattice spacing. Properties
were similar to those of neutral plasma. Such lattices
were used to interpret the propagation of microwaves in
the ionosphere. Plasma exhibits dispersion of waves and a
characteristic resonant frequency called the plasma frequency.
Resonance of microstructure in composites made of coated

cylinders is predicted to rise to extreme dielectric properties
provided that the outer layer dielectric constant is the negative
of either the core dielectric constant or the matrix dielectric
constant (Nicorovici, McPhedran, and Milton, 1994). Effects
occur even if the inclusions have a small concentration.
Periodic lattice composites containing copper split ring

resonators exhibit negative refraction (Smith et al., 2000).
Similarly, a periodic lattice of split ring resonators was
predicted to exhibit negative electric permittivity and
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magnetic permeability at microwave frequencies in the vicin-
ity of 5 GHz (Shelby et al., 2001). Negative refraction was
observed experimentally in a lattice consisting of square
copper split ring resonators and copper wire strips assembled
from circuit board elements (Shelby, Smith, and Schultz,
2001). Arrays of toroids have been also used as previously
described. Chiral structures can be used to obtain negative
refraction (Pendry, 2004). Chiral resonance leads to negative
refraction via a single resonance rather than resonance in both
permittivity and permeability. Negative refraction of light was
obtained using a waveguide exhibiting a surface plasmon
polariton mode (Lezec, Dionne, and Atwater, 2007).
Lattices of laminated platelike elements exhibited a neg-

ative refractive index over a range of infrared wavelengths
(Valentine et al., 2008). These lattices of fishnet structure were
made on a multilayer metal-dielectric stack via using focused
ion-beam milling. The metal was silver and the dielectric was
magnesium fluoride. This method has sufficient resolution to
cut nanometer size ribs and plates.
Negative index materials have been used to make super

lenses that focus visible light to a resolution of 70 nm
(Smolyaninov, Hung, and Davis, 2007). This resolution
exceeds the usual diffraction limit and is superior to that of
a standard optical microscope. The lenses were made with
alternating layers of positive and negative refractive index.
Negative index was achieved by depositing fine scale concen-
tric rings of polymer on a gold thin film. Composites and
lattices that depend on resonance share the common aspect that
they exhibit dispersion (frequency dependence) of properties.

C. Reciprocity in waves

For waves reciprocity states that the frequency response
functions between any two points are the same after exchange
of the source and receiver (Nassar et al., 2020). If reciprocity
applies to a material, one cannot adjust wave transmission to
be different in opposite directions. In particular, reciprocal
materials do not admit acoustic or optical diodes. Reciprocity
for waves can fail in active materials with external energy
input. Such materials violate time-reversal invariance.
Reciprocity can fail in nonlinear materials. For example,
electrical diodes exhibit a nonlinear relation between voltage
and current. Bifurcations allow nonreciprocal behavior and
hence unidirectional propagation of waves. A well-known
bifurcation occurs in the buckling of a column that can diverge
into any of several buckled states. This is a nonlinear
phenomenon. If a material is made with ribs near a buckling
transition, it can exhibit nonreciprocal response. The goals of
the study of nonreciprocal media are to advance basic science
and enable new devices that allow the unidirectional propa-
gation of waves and control of the direction of waves.

VIII. DISCUSSION

Limits and bounds via thermodynamics on physical proper-
ties are useful in guiding design with materials, but it has been
found that many such bounds are overly restrictive. Some
limits are derived using assumptions, not always stated, about
the system or material. If a material is chosen or designed that
does not obey those assumptions, then the limits and bounds

can be exceeded. Doing so not only manifests the freedom
of the researcher but also expands the regime of performance
that can be attained in practical uses of materials. Many new
materials and classes of materials have been made in the
context of achieving extremal physical properties, exceeding
accepted bounds on physical properties, or exhibiting a
response that is not anticipated in the classical theories.
Many of these materials have a larger scale structure. The
properties can depend strongly on the nature of this structure.
Thus, the researcher or designer is not restricted by the
chemical composition of the materials used as much as would
be the case if homogeneous materials were used.
Living tissue and certain designed materials are active

in that a power source is provided. Not even the mineral
kingdom is passive or at equilibrium. Annealing (physical
aging) occurs as energy stored in the formation of the material
is gradually released. Earth itself, though of great age, exhibits
dynamic activity powered by a dilute concentration of long-
lived radioactive elements. Matter formed from minerals via
human technology is not fully passive either. Annealing
occurs and physical properties change with time. Energy is
liberated slowly during annealing. Therefore, neither minerals
nor materials made by humans are as passive or dead as is
usually assumed in equilibrium thermodynamic derivations.
Materials may exhibit counterintuitive properties, giant

values of properties, or both and yet be consistent with
classical thermodynamic limits. Such materials are nonethe-
less interesting and of potential practical significance.
Materials with additional freedom can be explored at one

level by demonstrating the existence of that freedom. For a full
characterization of the material, one needs all the physical
constants or material property functions. This is an effort in
progress for many of the materials discussed.
New materials and new classes of materials have been

developed in the context of seeking extreme or unusual
properties, in particular, materials with negative or extreme
properties based on cellular or lattice structure or on con-
strained metastability, as well as nonreciprocal materials. This
can be a creative process that contrasts with the methods of
investigation of materials found in nature. For future endeav-
ors one may study carefully implicit and explicit assumptions
in theories that limit freedom, but to facilitate creativity, not to
overemphasize strategy.
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