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ABSTRACT: This article contains an analytic study of Poisson’s ratio of re-entrant foam
materials with negative Poisson’s ratio. These materials get fatter when stretched and thin-
ner when compressed. The Poisson effect is so fundamentally important to the properties
of a material that a large change in the value of the ratio will have significant effects on the
material’s mechanical performance. Isotropic foam structures with negative Poisson’s ratio
have been fabricated through a permanent volumetric transformation. The cells were con-
verted from the convex polyhedral shape of conventional foam cells to a concave or “re-
entrant” shape. Mechanical behavior of a re-entrant open cell foam material will differ
from that of a conventional foam in ways not addressed by existing theoretical treatment.
. Poisson’s ratio as a function of strain is obtained by modeling the three-dimensional unit
cell as an idealized polyhedron unit cell. Poisson’s ratio is predicted to approach the isotro-
pic limit of — 1 with increasing permanent volumetric compression ratio of idealized cells,
in comparison with experimental values as small as —0.8.

1. INTRODUCTION

C ELLULAR MATERIALS ARE multiphase composite material systems that con-
sist of a solid matrix and a fluid phase, the fluid usually being a gas. The
matrix makes up an interconnected network of solid struts (ribs) or plates which
form the edges and faces of cells. Recently, man has begun to realize the potential
of these materials and these cellular solids are increasingly used for structural
uses, for insulation, for load bearing, for absorbing the kinetic energy from im-
pact, and as a lightweight core in sandwich panels.

Cellular materials that occur naturally as well as those produced by man have
a convex cell shape and exhibit a positive value in Poisson’s ratio, which is
defined as the negative of the lateral strain divided by the longitudinal strain when
a load is applied in the longitudinal direction. In other words, stretching will
o = —TE——————_——
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cause a decrease in cross-sectional area and compression causes an increase in
cross-sectional area. The theoretical allowable range of Poisson’s ratio for isotro-
pic material in three dimensions is —1 to 0.5 as demonstrated by energy argu-
ments [1]. An isotropic material with negative Poisson’s ratio, however, was not
believed to exist until recently. Some anisotropic materials were found to give a
negative Poisson’s ratio in some directions [2-4].

Recently, isotropic foam structures with negative Poisson’s ratio have been fab-
ricated by one of the authors [5]. The fabrication was achieved through a transfor-
mation of the cell structure from a convex polyhedral shape to a concave or “re-
entrant” shape. The foam ribs can be made of any material; there is no restriction
on the chemistry. Negative Poisson’s ratio foams have thus far been made of
polymers and metals.

The applications of negative Poisson's ratio materials may be envisaged in rela-
tion to the Poisson’s ratio itself or in relation to other material properties that
arise from the unusual structure. In view of Poisson’s ratio » itself, an increase
in some material properties such as flexural rigidity, indentation resistance and
plane strain fracture toughness was predicted [5-7]. For isotropic material,
material properties that depend upon terms suchas (I — »2) or (I + ») can at-
tain extremal values as » approaches — 1. Plane strain fracture toughness is one
of the material properties that belongs to this category. A possible physical
mechanism for the enhancement of this property is that generated internal reac-
tions in structural elements due to negative Poisson’s ratio will act to resist crack
propagation.

As one of other possible improvements of material properties, a decrease of
shear effect in Timoshenko beam with a transverse load is expected. This inter-
pretation is based on Cowper’s result [8] for a shear factor kK which is a measure
of the shear stress distribution in the beam cross section. Cowper has shown a
listing of k as a function of Poisson’s ratio for several cross sections of beams. The
shear factors for any cross section decrease as v approaches — 1 and the effect is
most obvious in case of the thin walled tube. This benefit is partly due to the in-
creased shear modulus [9] when Poisson’s ratio is negative. Figure 1 shows the
difference in the shear effect under a bending deformation of conventional and re-
entrant rectangular beam made of Scott industrial foam (Foamade Industries,
Auburn Hills, Michigan) which was used in prior experiments [5,9]. The white
lines drawn on the surface of the deformed re-entrant beam are more oblique to
the horizontal line than those of the deformed conventional beam under the same
amount of bending deformation. Consequently, bending deformation rather than
shear deformation is dominant in the re-entrant beam because of the negative
Poisson’s ratio.

So, to summarize, materials with negative Poisson’s ratio present a new direc-
tion for improving mechanical performance. It is important to understand in-
teractions within the material structure that give rise to negative Poisson’s ratio,
- and it is also necessary to know the global behaVior.of these novel materials. In
this study, the Poisson’s ratio of re-entrant foams is obtained by modeling aMiee-
dimensional open cell as an idealized polyhedron unit cell approximating the
shape of cells. Experimental results are compared with the modeling.
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(b)

Figu?e™1. Shear effect in the rectangular beams made of Scott foam under a bending
mation: (a) natural state; (b) deformed state; in each picture, upper beam, conve
foam; lower beam, re-entrant foam.
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2. IDEALIZED UNIT CELL

During foam manufacture, isolated spherical bubbles of gas expand, and as ad-
jacent bubbles come into contact in producing a low density foam, a polyhedral
morphology is developed. In the mathematical analyses of the foam material, the
real structures have been simulated by the following idealized shapes: sphere
f10], cube [11-13], pentagonal dodecahedron [I4,15], and tetrakaidecahedron
[16-19]. According to Harding’s scheme [20], foam cell structures are modeled
with a dodecahedron of 12 faces based on the effect of the resultant capillary
pressure drop during foam processing. However, the geometrical parameters of
a regular tetrakaidecahedron of 14 faces are more susceptible to the formation of
an ideal foam structure than a dodecahedron, since a regular tetrakaidecahedron
is closer to the geometry of a regular sphere than a regular dodecahedron [21].
Also, Gibson and Ashby [22] showed that many foam cell structures have an aver-
age 14 faces and an average 5.1 sides per face. The equivalent polyhedral cell is
a tetrakaidecahedron having 6 square and 8 hexagonal faces. Thus, in this study,
" a regular tetrakaidecahedron is assumed as the mechanical model of the cells of

conventional open cell foam materials for the purpose of analysis. The cell model

used in this study is shown in Figure 2. The Scott foam used in the experiments
was observed to have a similar cell structure (Figure 3).

In experiments with polymer foams [9] and copper foam [23], the re-entrant
foam was obtained by applying permanent volumetric compressive deformation
with an equal amount in three orthogonal directions. The ratio of initial volume
V: to final volume V; is the permanent volumetric compression ratio, a processing
variable. Three different types of re-entrant cell models can be devised from the
conventional unit cell model. In all of them, a rib between two hexagonal faces

Figure 2. Idealized conventional unit cell: a regular tetrakaidecahedron.

X e -
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Figure 3. Scanning electron micrograph of the unit cell of Scott foam which takes the
of tetrakaidekahedron.

is considered to be bent or kinked. In the first type, the bent ribs protrud
ward; in the second type, they protrude inward; and in the third hybrid
some protrude out and some protrude in. The model with outward protr
ribs gives the most negative effect in Poisson’s ratio, which is demonstraf
simple proof tests using each physical re-entrant unit cell model. Thus, i
study, the open cell re-entrant structure is modeled as a re-entrant polyh
whose square faces protrude inward at the center position of the cell ribs coi
ing the square faces, as shown in Figure 4. Figure 5(a) shows a regularly p
structure with re-entrant unit cells made of poster board. The length of eac
rib is 10 mm. The negativeness in Poisson’s ratio of this structure is demons
by a simple tension and compression test as shown in the figure. Compress
the model gives rise to lateral contraction [Figure 5(b)]. Tension on the 1
gives rise to lateral expansion [Figure 5(c)] as a result of unfolding of the

Because of the symmetry of the conventional and re-entrant models,
structures can be analyzed in 2 dimensions to predict their behaviors; Fig
shows these two-dimensional cross-sectional views of conventional an
entrant cells, which are cut in the diagonal direction of the square face. 1
figure, A is the cell of the conventional foam. The angle ¢ will determit
volume of the cell and the volumetric compression ratio at each instant. B :
sents the cell shape at ¢ = w/4 and C shows one of the re-entrant cell stru
when ¢ is greater than w/4 and less than 7/2. Cell D indicates the fully
pressed state at ¢ = 7/2, resulting in the contact of the adjacent cell ribs.
the length change of cell ribs can be neglected without loss of generalit
volume V of each cell is expressed by the following equations:
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Figure 4. Idealized re-entrant unit cell.

(@) , ()
Figure 5. A regularly packed structure with idealized re-entrant unit cells made of a poster : Figure 5 (continued). A regularly packed structure with idealized re-entrant unit cells
board and simple tests which shows a negative Poisson’s ratio: (a) natural state; (b) com- . of a poster board and simple tests which shows a negative Poisson’s ratio: (a) naturai

pression; (c) tension. (b) compression; (c) tension.
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Figure 6. Two-dimensional cross-sectional view of the idealized conventional and re-
entrant unit cell.
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~ where [ is the length of the cell rib. Equation (1) is derived by addirig the extrud

volume from the cube which is enclosed by the convex conventional model. T
volumes of the concave re-entrant models [Equation (2)] are obtained by su
tracting the intruded volume of the same cube. The volume V; of a tetrakaidec
hedral cell of the conventional foam is 84/2/%. Thus, the volumetric- compressi
ratio is expressed as

L igﬁ[\/i + sin (7/2 — @) (

Ve 5
where V; is the final volume of re-entrant cells. Since each unit cell has 36 ri
and every three cells has one rib in common, the relative density o./o,, where
is the density of the conventional foam and g, is the density of the solid, can
expressed as g./0, = 1.06(#/1)?, where ¢ is the width of the rib under the assum
tion of square cross section. This relation agrees with Gibson and Ashby’s resi
[22].

3. POISSON’S RATIO OF RE-ENTRANT FOAMS

Figure 7 shows the enlarged view of the re-entrant cell in the circular secti

Figure 7. The enlarged view of the re-entrant cell structure in the circular region in Figure
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in Figure 6. The kinked region is considered to be central to the cell unfolding
process responsible for the negative Poisson’s ratio. In the case of elastic-plastic
material such as copper, the Poisson’s ratio of the structure will depend on the
elastic bending deformation of cell rib BC at small strain, the rotation of the cell
rib around the node C due to plastic hinge formation and the elastic-plastic defor-
mation in the transition region. .

A force that is applied at the center of a square face in the regular tetrakaideca-
hedron produces bending deflections &, = 8[cos (w/4) + cos (w/4)] and
8, = 6 cos (m/4) of the cell ribs. Analysis of these deflections yields a Poisson’s
ratio of 0.5 for conventional foams at small strain.

Poisson’s ratio at small strain will be discussed first. If a force is applied to the
square face in the x direction, the cell rib will deflect by an amount of 8, which
gives the x component of displacement as §, = cos (¢ — =/4) and the y compo-

nent of displacement as 8, = sin (¢ — w/4) from elementary beam theory. The -

dimension of the cell at a natural state is assumed to be the length AG in Figure
7. Thus, Poisson’s ratio »,, at small strain is expressed as follows:

_ sin (p — w/4)
T T Cos (¢ — w/d) @

Poisson’s ratio ., at a certain volumetric compression ratio can be determined by
Equation (3).

The strains e,,¢, due to the rotation of cell rib BC around node C are expressed
as follows:

_ N2 sin(p — 7/4) ~ sin (¢ — w/4 — 6)

&= 1 + sin (x/2 — )
NG}
_ V2 cos(p — w4 — 8) — cos (¢ — w/4)
=7 1 + sin (7/2 — o)

where 0 represents the rotation angle of the cell rib BC in the clockwise direc-
tion. Thus, the Poisson’s ratio »,, at large strain after plastic hinge formation is
expressed as

cos (¢ — w4 — ) — cos (p — w/4)
sin (p — w/4) — sin (p — w/4 — 6)

()

Vpr = —

Poisson’s ratio »,, can be related with strain and volumetric compression ratio via
Equation (5) and Equation (3), respectively. o

Finally, the variation of Poisson’s ratio in the transition region during elastic-
plastic deformation is calculated. If an applied bending moment in this member
BC exceeds the plastic value, an elastic-plastic deformation will occur in the
member. A mathematical model applied in this analysis is a built-in cantilever
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beam. The deflection at the free end during the elastic-plastic deformation is e

- pressed as follows under the assumption of a nonhardening material [24]:

OIS RN <

where 6 is deflection, W is load, 6. is deflection at the initial yielding and W,
load at the initial yielding. The plastic boundary is part of a parabola having
vertex on the central axis and this boundary grows into the central region of t
rib from each side as the deformation continues. The beam eventually collaps
when the bending moment at the built-in cross section attains the fully plas
value. The collapse load is therefore equal to 1.5 W,. Since the x component
the deflection is 6 cos (¢ — w/4), the strain ¢, becomes ‘

8
€ = eexﬁ—e (

where e, is the x component of strain at the initial yielding. Similarly, from t
slope in the deformed beam, the strain ¢, is expressed as follows:

.6 1 — cosg W, , 2V W
Ey=€ey.g;_ 2 .eex717=(W)[3_2 3 - Wz_We (

~where e, is the y component of strain at the initial yielding.

Thus, Poisson’s ratio variation »...,; upon strain during elastic-plastic deform
tion becomes :

1 —cosy I
Vel—pl = Vy — €ex 26 (
N X

where v, is the Poisson’s ratio at the initial yielding. The load varies from t
initial yielding load W, to the collapse load 1.5 W.. At each amount of the loa
strain components ¢, and ¢, can be determined by Equation (8) and Equation (¢

- respectively. Finally, Poisson’s ratio can be related with volumetric compressi

ratio by Equation (3). For small strains, we expect », = »,,.

4. DISCUSSION AND COMPARISON WITH EXPERIMENT

Experimental results used for comparison are from previous st.udies up
polymer foams [9] and copper foam [23]. Figure 8 shows the analytical relati
of the volume of the cell and volumetric compression ratio to the angle ¢.
¢ = w/4 and ¢ = 7 /2 which are the minimum and maximum values for t
foam to be re-entrant, volumetric compression ratios are 1.4 and 4.8, respe
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Figure 8. Volume of the conventional, re-entrant unit cell and volumetric compression ratio
vs the angle ¢ in the cell model.

tively. Experiment disclosed that negative Poisson’s ratio was best produced in
the range of volumetric compression of 3.3 to 3.7 because of the recovery and the
cell rib adhesion in polymer foams. A re-entrant polymer foam of volumetric
compression ratio of 1.6 showed a negative effect in Poisson’s ratio. Moreover,
foam could not be transformed beyond a volumetric compression ratio of 5.0
because of contact and adhesion of the cell ribs. Thus, the present model is con-
sidered to be satisfactory.

Figure 9 shows the minimum Poisson’s ratio that a re-entrant foam can have at
small strain with a certain volumetric compression ratio. The present analysis is
for elastic-plastic foams. Experimental results for polymer foams which are
elastomeric foams, are used in the comparison with the modeling result in Figure
9. This was done since a full data set was not available for copper foam. The com-
parison is meaningful because all kinds of foams have the same deformation
mechanism within the linear elastic region at small strain. The experimental
results for elastomeric polymer foams show a similar behavior to that predicted
by the analysis except at a large volumetric compression ratio at which the re-
entrant foam had some cell rib adhesion and contact that diminished the negative
effect in Poisson’s ratio. The analysis predicts a Poisson’s ratio of 0.5 for conven-
tional foam, in agreement with Reference [17]. The reason is that the ribs are
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Figure 9. Minimum Poisson’s ratio that a re-entrant foam can have at a certain volumet

compression ratio: open symbol, modeling; solid symbols, experiment [9]; open squa
Scott foam in tension, strains less than 0.5%; open circle, grey foam in tension, at 5% stra
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assumed to be straight, so that their rigidity in tension/compression, which
governs the bulk modulus, greatly exceeds their rigidity in bending, which
governs the shear and Young’s modulus. In actual foams of conventional struc-
ture, there may be some initial curvature or misalignment of the ribs which would
give rise to a lower Poisson’s ratio approaching 0.3.

Furthermore, actual re-entrant foam structure is more complex and irregular
than that assumed in the analysis. It is not composed of only one type of re-
entrant unit cell but has a hybrid re-entrant structure. This study used only the re-
entrant cell model which gives the best negative effect in Poisson’s ratio among
the three cell models. Thus, the theory gives a slightly better negative Poisson’s
ratio than experiment over the whole range of volumetric compression ratio.

Figure 10 shows the comparisons for predicted Poisson’s ratio vs strain with the
experimental data for copper foam. The strain at the initial yielding, .., was
assumed as 1% in both volumetric compression ratios of 2.0 and 2.5. Analysis
and experiment are in good agreement with each other at a volumetric compres-
sion ratio of 2.0. But, at a volumetric compression ratio of 2.5, the shape of the
curves is similar, but the magnitudes differ. At a high permanent volumetric com-
pression ratio the cells become more convoluted; moreover there is the possibil-
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Figure 10. Comparison of the modeling result to the experimental data for copper foam:
open symbols, modeling; solid symbols, experiment [23]; circles, volumetric compression
" ratio 2.0; squares, volumetric compression ratio 2.5; triangle, optical test result, volumetric
compression ratio 2,13,
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ity of non-homogeneous compression, and damage of cell ribs, which could
count for the discrepancy. In the calculation of the Poisson’s ratio »,,.,, dur
elastic-plastic deformation, the Poisson’s ratio »,, at small strain was replaced
the value of the Poisson’s ratio », at the initial yielding. As is obvious from
characteristic curve of Poissor’s ratio upon strain which includes Poisson’s rz
of —0.8 obtained by an optical test (Figure 10), the re-entrant foams have a v:
sharp cusp in Poisson’s ratio for strains less than the yield strain. In this rega
the », value will differ from the »,, value. And also experimental results for c:
per foam [23] which is an elasto-plastic foam, showed a change of yield str
with volumetric compression ratio. The yield strain was 0.2% offset yield str
and actual initial yield strain should be smaller than that. At a permanent vo
. metric compression ratio of 2.5, the modeling results approach the experimer
data if one chooses a smaller value of the initial yield strain and a smaller ;
solute value of Poisson’s ratio at the initial yielding. The model in the pres
study is confined to Poisson’s ratio of elasto-plastic re-entrant foam material o
a range of strain. But, all kinds of re-entrant foams made of elastomeric foa
elasto-plastic foam and brittle foam, can be described by Equation (4) for
value of Poisson’s ratio at small strain. The polymer foams used in experime
[9] which are nonlinear elastic materials, can be analyzed similarly at large str
because they exhibit cell rib rotation similar to the plastic hinge formation of
elastic-plastic foam. The Poisson’s ratio of the polymer foams had a similar ct
behavior with copper foam even if it was much broader (about a factor of 10) tt
that of copper foam. ’ S
Other kinds of negative Poisson’s ratio materials have also been repor:
[25-30]. Since the physical mechanisms for the behavior may differ, neither |
present analysis nor the observed nonlinearities of re-entrant foams can be
pected to apply to all materials with a negative Poisson’s ratio. However a cu
in the dependence of Poisson’s ratio on strain also occurs in negative Poisso
ratio cellular solids [27,28] of microstructure quite different from the re-entr;
foams considered here. The common element appears to be the realignment
the geometrical configuration responsible for the negative Poisson’s ratio
deformation occurs. :

5. CONCLUSION

1. The analysis predicts that Poisson’s ratio for small strain decreases as the p
manent volumetric compression ratio increases. Analysis and experimu
agree reasonably well down to » = —07.

2. Poisson’s ratio of re-entrant foams is dependent upon strain and has a cu
shape at relatively small strain. Elastic-plastic deformation of elasto-plas
foams gives rise to a sharp cusp.

3. The model in the present study explains Poisson’s ratio of elasto-plastic i
entrant foam material in the regions of linear elasticity, elastic-plastic def:
mation and plastic collapse.
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