Extreme stiffness systems due to negative stiffness elements
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When an elastic object is pressed, we expect it to resist by exerting a restoring force. A reversal of
this force corresponds to negative stiffness. If we combine elements with positive and negative
stiffness in a composite, it is possible to achieve stiffness greater(tindess thanthat of any of

the constituents. This behavior violates established bounds that tacitly assume that each phase has
positive stiffness. Extreme composite behavior has been experimentally demonstrated in a lumped
system using a buckled tube to achieve negative stiffness and in a composite material in the vicinity
of a phase transformation of one of the constituents. In the context of a composite system, extreme
refers to a physical property greater than either constituent. We consider a simple spring model with
pre-load to achieve negative stiffness. When suitably tuned to balance positive and negative
stiffness, the system shows a critical equilibrium point giving rise to extreme overall stiffness. A
stability analysis of a viscous damped system containing negative stiffness springs reveals that the
system is stable when tuned for high compliance, but metastable when tuned for high stiffness. The
metastability of the extreme system is analogous to that of diamond. The frequency response of the
viscous damped system shows that the overall stiffness increases with frequency and goes to infinity
when one constituent has a suitable negative stiffness200@ American Association of Physics Teachers.
[DOI: 10.1119/1.1619140

[. INTRODUCTION upon movement of the contact point. To demonstrate the
negative stiffness of the S-shape ruler, constrain the center

Press on a spring or a seat cushion. Observe the fordeflection point by pressing it with a spring or a deformable
required to achieve a given deformation. Stiffness refers t#ing. As you move the free end of the spring, observe how
the ratio of the generalized force to the generalized displacghe contact point moves. The direction of deformation of the
ment. For a spring the stiffness is the ratio of the force to thespring or ring reveals whether the buckled ruler resists the
displacement: the usual spring constdat For a three- imposed deformation or assists it. This demonstration reveals
dimensional solid viewed as a continuum in the context ofthe existence of negative stiffness, its instability, and the pos-
elasticity theory, the measure of stiffness is the ratio of the sibility of stabilizing it by a constraint.
stresqforce per aregto the straindisplacement per length Buckled tubes also exhibit negative incremental stiffness,
referred to as a modulus. For example, Young’s modulus anthat is, the stiffness of a material to perturbations about a
the shear modulus are used for axial and torsional propertieseformed configuration. Snap throdgalso occurs on the
respectively. Modulus is a continuum property independenatomic scale in materials such as ferroelastic solids which
of the geometry and size of the material. exhibit a solid to solid phase transformation.

Objects usually resist deformation by a restoring force. Negative stiffness is to be distinguished from a negative
Positive stiffness occurs when the deformation is in the sam@oisson ratio. Poisson’s ratio, denotedvags defined as the
direction as the applied force, corresponding to a restoringegative lateral strain of a stressed body divided by its lon-
force that returns the deformable body to its neutral positiongitudinal strain. Based on the assumption of positive defi-
A negative stiffness object assists the imposed deformatiomiteness of the strain energy for isotropic and homogeneous
Negative stiffness involves a reversal of the usual directionasolids,» ranges from-1 to 0.5, which implies stability. Posi-
relationship between force and displacement in deformed oltive definiteness does not specify the particular value of Pois-
jects. son’s ratio within that range. The value offor most solid

Negative stiffness is possible in systems with a pre-loadmaterials is between 0.25 and 0.33. Recently, foams with
To demonstrate negative stiffness, compress a plastic ruler ss small as-0.8 have been made and analyZédvhenv is
that it forms a buckled S shape. Because a third force wilhegative, materials become fatter in cross section when they
presently be needed, the ruler’s ends can be held in place laye stretched. The stiffness of these foams is nevertheless
two books. This buckled shape is unstable, so hold it in plac@ositive.
at the center inflection point. Then release the constraint, and Composite materials with negative stiffness constituents
observe the ruler suddenly snap to a new shape. This snapnd exhibiting extreme mechanical properties have been re-
through instability is indicative of negative stifnés®©ne  ported in several theoretical and experimental stufieShe
can also provide two constrainfsuch as two fingejspaced rationale for expecting extreme behavior in systems with one
by a small distance as shown in Figalland observe the negative stiffness phase can be understood by considering
ruler snap from one to the other geometrical configuratiorthe following thought experiments based on simple mechani-

40 Am. J. Phys.72 (1), January 2004 http://aapt.org/ajp © 2004 American Association of Physics Teachers 40



cal spring models. For a parallel elastic systétp=E;V,
+E,V,, whereE., E;, andE, refer to the Young’s modu-
lus of the composite, phase 1, and phase 2, respectively.
andV, refer to the volume fraction of phase 1 and phase 2
with V;+V,=1. The parallel elastic system has bonded
phases which undergo the same strain and is known as th ...,
Voigt model° If we have parallel springs of spring constant constraint
k, thenk.=k;+k,. Similarly, for a series system of springs,
K= 1/(k1’1+ kgl). The system of springs in series is analo-
gous to the Reuss model in compositeén the series sys-
tem, we can express the compliarjeel/k asj.=j;+]j,. If
one stiffness is negative, the corresponding compliance is
negative. We can sum a positive and negative compliance t
obtain a zero compliance and hence an infinite stiffness.
Therefore, extreme, and even singular stiffness is possible i@
heterogeneous systems with a negative stiffness constituent.
However, a negative stiffness element by itself is unstablefig. 1. (8 Buckled plastic ruler to demonstrate negative stiffnebs. A
and the series model also is unstable. If systems containi ring system that can exhibit positive or nggative stiffness depending on
negative stiffness can be made stable, they can be useful ad'g Pre;0ad. The symbdi represents the spring constant, the angithe

. . generalized coordinate describing the motion of the springs, fn@hot
re;glst of the unexpected large values of their physical ProP5hown the initial force in each spring.
erties.

A material with negative stiffness is in unstable equilib-

rium, because the material has a higher positive stored en-

ergy at equilibrium, compared to neighboring possible equitontain elements such as capacitors which store energy, and

librium Configgrations. Amaterial with negative stiffness Canamp"ﬁers_ The method predicts the Stab|||ty of a dynamic
be stable if it is constrained. For example, the buckled rulegystem, governed by

is an example of such a stabilizing constraint. Also, a buck-

led rubber tube has a negative stiffness compohant ex- x=X(X), D
perimentally reveals a large peak in the mechanical damping, ) . )
consistent with the prediction of the Reuss model with ongévhere X is a column-vector function ok, x=x(t) is a
phase having negative stiffness. Mechanical damping is theolumn-vector function of time, and the dot denotes differ-
dominating mechanism in energy dissipation of a vibratingentiation with respect to time. Using the calculus of varia-
object. The idea that negative stiffness may occur has mottions the perturbation of the dynamical system can be written
vated a series of explorations of extreme phenomena in coni© first order as

posite materials. An analytical model of a distributed com-

pqsite showSthat iso;ropic composites can possess extreme  __( 5y)— |y - 8%, )
stiffnress and damping. Furthermore, the contribution of  dt e

negative stiffness to physical properties of materials gives

extremely large coupling effects, such as piezoelectric, pyroWhere the Jacobian matrik=dX/dx, or Jj;=dX;/ox; . The

electric, and thermal expansion coefficiehtén this article,  Subscriptx, indicates that the matrix], is evaluated at the

we analyze the stability of several spring systems with gquilibrium point @x/dt=0), X=X, whereX(xe) =0.

negative stiffness element. Lyapunov’s indirect method states that if all the roots of
the characteristic equation of the matixof the perturbed
system in Eq.2) have negative real parts, then the unper-

Displacement, x
<+ - mass, m ’
Constraint

force

Applied force, F

(b)

[I. STABILITY ANALYSIS WITH THE turbed system, Eq1), is asymptotically stabl& However,
DEMONSTRATION OF A NEGATIVE STIFFNESS when the real parts of the eigenvalues are zero, we need to
ELEMENT investigate the imaginary part of the eigenvalues or the re-

duction in the eigenspace of the system. In this case the
A stability analysis can be done using two different ap-system will be stable when the imaginary part is nonZero.
proaches. One approach is to investigate the energy land- To demonstrate the relation between Lyapunov’s indirect
scape of the system. This approach is only suitable for sysnethod and known cases of stability and instability, we first
tems without energy dissipation. A region with a concave upanalyze a spring system with a negative stiffness element
energy profile, that is, the second derivative of the energysee Fig. 1b)]. The negative stiffness arises from a compres-
function is greater than zero, indicates that the system isive pre-load in the springs. The equation of motion for the
locally stable around the equilibrium positiéhAn alterna- system is
tive method is to examine the eigenvalues of the perturbed
dynamical system in the context of Lyapunov’s stability 1 0
theorem>*3This approach allows the effects of dissipation, kh cosa 1)+f
stored energy, and input power to be accommodated.
Lyapunov’s indirect method will be adopted here for a sys-wherex=x(t), anda=a(t) [see Fig. 1b)]. The symbolf®
tem with nonconservative components. represents the pre-load inside both #weandbc springs and
Lyapunov’s indirect method often is called the Routh—should be distinguished from the applied for€e,If we re-
Hurwitz criterion in electrical engineering:** This type of  place the displacemenrtby the generalized coordinate we
stability analysis is used to analyze electronic circuits thatan express the equation of motion as

m¥x+ 2 sina=F, (©)]
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(mhseé a)&+ (2mhsed a tana) a®+ 2khtana
—2khsina+2 f%sina=F. (4)

To investigate the stability aroung<<1 (corresponding to

a vertical position of the springsindda/dt<1 with F=0, h

Eq. (4) can be further simplified: Displacomnt, 1, . Displacement, x,
210 Applied force, Fy, Applied force, Fy
a+ W a=0. (5) ky

k3
To obtain the general form of the equation of motion for a
dynamical system, as in E¢l), the standard method, which

is called the state-space technique for reducing higher orde
ordinary differential equations to lower order ones, is used so
that Eq.(5) can be rewritten as follow’s. The first step in
using Lyapunov’s indirect method to investigate the stabilityFig. 2. Two-dimensional spring system, undeformed configuration. The
is to change a higher order differential equation to a systemnglesx andg are generalized coordinates. The spring elemlentk,, and

of first-order differential equations: ks, may have initial forces, denoted ﬁ%, fg, andfg (not shown, and
changes of length\;, A,, andA; (not shown. The structure is symmetric

. 0 1 in loading conditions, geometry, and material properties. We may apply a
(? _ 2 §0 a), ©6) forceF,, butF,=0 throughout.
q -— 0(\9
mh
where q=da/dt. Near the equilibrium pointa=0 andq U=kh?*(seca—1)*+2 f°h(seca—1), 1Y
=0, andJ is 52U
i —_o 0
0 1 Ey: - 2 f*h. (12
— 0
J|Xe_ _ i ol @) Clearly, if {°>0, U is always greater than 0, and tbé ) is
mh concave up around=0, that is,x=0, the equilibrium point,

A2+ —=0, tS)

A= m—+i0, (93)

7\22— m—+i0, (gb)

for f°<0 (pre-compressédand

o4 [2 O
)\l— +1 m,

is unstable. We see that the results of the stability analysis
can be obtained from both methods, and a spring system with
a compressional pre-load is unstable around the equilibrium
point, =0, consistent with our physical intuition. The pre-
compressed two-spring structure expresses the instability of
unconstrained negative-stiffness materials.

The stability analysis performed here is crucial for under-
standing the later analysis for extreme stiffness phenomena.
In the following we will embed a negative stiffness element
into other positive stiffness elements and investigate the sys-
tem’s unusual mechanical properties. Then, the stability
analysis of a simplified spring model will be discussed.

(10g  lll. ANALYSIS OF THE SPRING MODEL WITH
EXTREME STIFFNESS
0
Np=0—i % (10p  A. Linear model: No pre-load

for f9>0 (pre-stretche)ld where\ represents the eigenvalues

of J. We conclude that the system is unstable w0,
because Ra()>0 in Eqg. (9a), and is stable wheri®>0,

To understand the influence of negative stiffness compo-
nents on the overall stiffness of a mechanical system, we
consider the two-dimensional spring system shown in Fig. 2.
It can be seen that the negative stiffness element is the inner

because Rag)=Re(,)=0 in Eq.(10) with nonzero imagi- set of springs when they are deformed to the vertical posi-
nary parts. Note that the magnitude of the eigenvalues wiltion. (As demonstrated in Sec. Il, the pre-compressed two-
be extremely large when the massapproaches zero. The Spring structure contains negative stiffngSshe springs are
eigenvalues with large positive real parts cause the system &ssumed to be linear, with force—displacement relations of
diverge rapidly from unstable equilibrium when the mass isthe formF=kx, wherek is a constant. Because the angles
small. Physically, it is understood that the system is locallychange with deformation, a complete load—displacement
stable in a pre-stretched stdthat is, tensile pre-logdike a  analysis requires us to adopt the equations of motion based
guitar string, but cannot be locally stable in a pre-on the deformed configuration, which is the central concept
compressed stafghat is, a compressional pre-lgad of geometrical nonlinear analysisee Sec. Ill B. Geometri-

If we perform the stability analysis by the energy cal nonlinear analysis is a method of characterizing load—
method!® the total energy and its second derivative can belisplacement relations of a structure under a large deforma-
expressed as tion assumption.
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We first perform a linear analysis in the absence of pred. Kinematic relations
load, to make a comparison with the geometrical nonlinear
analysis presented later. The analysis is conducted using the e let the anglesr and 3 represent the change 6fand ¢
energy method under the quasi-static assumption, that is, n@{ter the deformation as shown in Fig. 2, and interpreind

glecting inertial terms. The total strain energy of the system @S generalized coordinates. The change of the lengths of
is, in terms of the displacements andx,, the springs, denoted h¥, can be related to the generalized

coordinates as:
U=2U;+U,+2U,, (13

where U;=Kk; (xpsinf)?, U,=k, (x,—Xz)?, and U, A,
=Kk; (X, Sing)% Here § and ¢ are the angles of springsc

and ac from the vertical line bd, indicating the initial con-
figuration of the system. The subscripts 1, 2, and 3 denote the

~h h
“cog0—a) cosh’

(17)

A,=(htan¢—B)—htan#— «))—(htang—htand),

bc or bd spring, ab spring, and theac or ad spring, respec- (18)
tively. In other words, the subscripts 1, 2, and 3 represent the h h

springs with the spring constarit;, k,, andks, respec- Ag= - i (19
tively. cod¢—pB) cose

We now obtain the force displacement relation for the

; ; o Once the relationship between the deformation of springs
tsopr?g gs?fgﬁg] 'lg\\llve g?nbdoasno gxez?gd;renﬁé{ah%;:jhc;tjlgﬁ Z‘;Ng;vénd the generalized coordinates is found, the total potential

tigliano’s (first) principle” which states that for linear elas- SN of the spring system, including the contribution from

tic materials under small deformation, the partial derivativem't"'ljlI fprcefst,hsholwnt_ln Eq(t20), .W'ltlhbe %SEd n thfe dSt?T%I.'ty
of the total strain energy with respect to an external force i@nalysis of the elastic system in the absence of damping,

equal to the displacement in the structure corresponding to

- . . 1
that force. SpecificallyF;=dU(x;)/dx;, wherei andj de- U=k, A2+ Z kA3 +kgAZ+2 FOA+ A, +2 FIA,
note the direction of the generalized coordinates. The force— 2
displacement relation for the system is (192 (192 (192

ko ko 2kysinf 6 [ X Fo Hereh is half of the vertical distancéhe length of the line
We can use Eq(14) and the pre-determined parameters ofcd) between the two hinges. We can also see that the relation
stiffness and initial geometry of the system to obtain a spebetween the generalized coordinates and displacements at
cific load—displacement relation of the system. With the aspointsa andb is
sumption that the forcE,=0, the degrees of freedom of the

system can be reduced from two to one. Equatid and Xa=htang—htan¢—pB), (21)
(16) show explicitly the interrelation between the two de-
grees of freedom and the load—displacement relation at point X,=htané—htan 06— a). (22)
a, respectively:
ko 2. Equations of motion

X0~ 2k, S 6 (15 | |

o+ 2Kq Sin” 6 Newton’s second law for the mass poiatandb gives the

Ko+ 2K, Sir? following equations of motion in terms of the generalized
xaz2|<2k3 SITZ b+ 2KyK, SIT? O+ Ak;Kq SITE &SI 0Fa' coortljmatexv(t) and B(t), and the displacemenig(t) and
(16) Xp(1):

The ratio of F, to x, in Eq. (16) can be considered as the mX,=F,+f,+2f3sin(¢— ), (23
effective stiffness of the linearized system in the incremental _
sense. Equationd5) and(16) will be used to compare with MpX,=2 fysin(6—a)—f,, (24

the following analysis, which incorporates the effects of pre- ) )
load in a full nonlinear representation. Observe that as wavherefy, f,, andf; are the internal forces in thie;, ks,
might expect, all terms are positive and there are no singuandKz springs, respectively, and, andmj, are the masses at
larities. points a and b, respectively. By substituting the kinematic

) ) ) ) relations, Eqgs(21) and (22), into Egs.(23) and (24), the
B. Geometrically nonlinear model including pre-load equations of motion can be expressed in terms of the gener-

We now analyze the spring model in Fig. 2 including the lized coordinates:
effects of pre-load in the context of full geometrical nonlin- . .5 .
earity. The goal is to explore interesting phenomena in the “Vigl® :{ 2T1(D)sin(6—a) —f5(t) ]
vicinity of the snap-through of springsc andbd. The static B B2 | patfa(t)+2f5()sin(¢p—p) )"
or dynamic equations of motion have to be expressed with (25
respect to the deformed configuration in order to fulfill the
requirement of geometrical nonlinear analysis. To derive th&/here

governing equations for the system, we introduce the kine- [

myh seé(6— a) 0
0 myh seé(¢p—B)

matic relations first, then the equations of motion, and finally

-~ ; : (26)
the constitutive equations.
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—2myh seé(6— a)tan 6— a) 0

B= 0 —2mahsed(¢p—Btanp—B) |’ 20

3. Constitutive relations
Hooke’s law holds for linearly elastic springs and the relation between force and deformation is linear, that is,

fi=k A+ (28)
fo=kpA,+ 19, (29
fa=ksAs+f3, (30)

where thef’s are the total spring forces, arifl’s are the initial forces or pre-loads inside the springs. The sign convention of
the internal forces is chosen so that tension is positive. If we substitute the constitutive equations into the equations of motion,
we obtain the governing equations in the generalized coordinates:

2k;h sin(0— @)  2kih sin(6—a)

aZ} co%0=a) osd +2 f9sin(0— a)—[ky(h tan(¢— B) —h tan — @) —h tan p+ h tan §) + 3]

(31)

2ksh sin(¢p—p)  2ksh sin(¢—pB)
cod¢—p) cos¢

Fat[ko(htan(¢—B)—htan 6—a)—htang+htans)+ 3]+ +2 f3sin(¢p—pB)

If we assume quasi-static processes, the right-hand side &ig. 3. Because stability analysis, based on Lyapunov’s indi-
Eq. (31) is zero. Then Eq(31) can be restated as the follow- rect theorem, deals with perturbations of a linearized system,
ing equilibrium equations. The strategy used here is analcthere is no loss of generality.

gous to Eqgs(15) and(16) in the previously mentioned linear ~ The governing equations of the system in Fig. 3 can be
model, and the purpose is to relate the two generalized coodirectly written as follows, withF;=0,

dinates to the only applied load at poamt

9k . B
B=¢—arctar(tan¢—tan6+tar(6— a)—ﬁ+2k—1 m 0 % kitka —ka|(x; +(f):( O)
2 2 O m2 X2 _k2 k2 X2 O FZ ’
" —Sil’l(@—a)+ s 9 , (34)
" cosO® tan( a) kl—hSIn( a)l |,
32 .
( ) f+ K ZK f: KKiKIi X1+ KK‘::-"’I](' Xl (35)
F.=—(kph(tan ¢— B) —tan — a) + tand—tane) 1R 1T K2 1T K2
£9y_2 ksh ksh £l g H < the vi . 4 thee 4 A
+13) cosh—pB) cosp '3 sin(¢—p). ere 7 is the viscosity, and thé&'s and «'s represent the

stiffness of the springs. The element parallel to lthespring
(33 is often called a standard linear solid element in the context

A . ) of viscoelasticity. To demonstrate that the system exhibits
The equilibrium equation€32) and (33) are responsible for oyreme stiffness, the complianéthat is, the ratio of the

generatin_g Ioad—displa_cement curves with no restriction ORjisplacement to the applied fojaef the system can be easily
the magnitude of the displacements at nodesdb. calculated in the frequency domain with the aid of a Fourier
transformation:

IV. STABILITY ANALYSIS OF A SPRING MODEL
WITH EXTREME STIFFNESS

The spring model in Sec. Il is important for demonstrat- 1 |X1_FL !ﬂé
ing how a negative stiffness element surrounded with posi-/
tive stiffness elements leads to extreme overall stiffness.” ]
However, a direct investigation of its stability with the
Routh—Hurwitz method involves mathematical and numeri-
cal complexity that might obscure the underlying physics,
especially when viscosity is included. Here, we analyze the )
stability of a linear spring model, as shown in Fig. 3. It is
eqUi\./aler.]t(except for the addition of a viscous E|em)?m. with a negative stiffness componenk,;=10x10° N/m, and k,=5
that in Fig. 2 for small deformations about an equilibrium X 10° N/m. Herex,, k,, andz form a standard linear solid element in the

pOint- Th? nggatiye stiffness due 'FO the pre'_k)ad in tr?Q:ontext of viscoelasticity. Assigning; to be negative is equivalent to com-
springsk, in Fig. 2 is subsumed as a linear negative spring inpressional pre-load in thiesprings in Fig. 1b).

Fig. 3. One-dimensional linear spring system for demonstrating stability
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KiKyTiwk 7

2 — k,=10 = k=10 rk=5 «
_wm+k +k+ - k 2 / .k_IO X, 2 o2 s k=3
PP e+ kptioy 2 wh X, x: o g% oyt
» . / ’
_k2 —w2m2+ k2 I / n ,' l'
3 I\\me, r
X, 0 & 30 / . no pre-load A
o) T\ Ey) 9 3 ¢ : kel
< / X,
The tilde denotes the Fourier transformed variables. If we let & o
[ 2 e

=0, we can obtain the compliance of the system under a <

guasi-static assumption.

For stability in the sense of Routh—Hurwitz, the equations

of motion, Eqs(34) and(35), can be rewritten in state space

’

50 7

o

a

Lo:

as
0
uq U, 0 ) SR BN RV R
U, U, 0 10 20 30 40 50
. 0 Displacement, mm
V1| =J| vy |+ , (372
13 Uy E Fig. 4. Load—displacement diagram for the spring system in Fig. 2 with no
f f m, ks springs and no initial forct_es._The spri_ng constant iqr.is 10
X 10° N/m. The symbols, andx, indicate the displacement at poirtsnd
0 b, respectively. The curved lines are calculated results based on the geomet-
where ric nonlinear analysis with no pre-load. The straight lines represent a linear
approximation about zero displacement. The unitskioin the diagram are
T 0 0 1 0 T 10° N/m.
0 0 1 0
ki+k, ks 1 change of structural shape, even though each spring has a
m m, 00 m linear force-deformation characteristic, because the angles
J= (37b) change as the system is deformed. In the linear approxima-
ﬁ _ ﬁ 0 0 0 tion, the system will never buckle due to the lack of consid-
m, m, eration of geometrical changes, as the straight lises Fig.
ik ot K 4, curves denoted as “L.inear, no pre-loadThe mat_ch of
172 0 x, 0 -1 72 the slopes of the load—displacement curves for the linear and
L Uj n geometrical nonlinear analysis near zero deformation con-

firms the validity of our calculation. By tuning the stiffness

Herev,=du,/dt andv,=du,/dt. The second term on the of thek, springs, it can be seen that the overall stiffness of
right-hand side of Eq(373 is irrelevant to the stability
analysigsee Eq(2)]. The reason is that this term contributes around x,= 10 mm whenk; =10 andk,=3x10° N/m. If

a particular solution to the ordinary differential equation. Aswe observe the curves fi,<3x 10° N/m, it is understood

the system at poing, the loading point, approaches infinity

long as the driving forcef,, is a bounded function or its that the corresponding functions for the curves are multi-
driving frequency is not the natural frequency of the systemvalued functions with respect to both displacement and
(for »=0), the contribution of the particular solution will loads.

not cause unbounded responses of the system. The inverse ofThe snap-through or back-through phenomena will occur
the eigenvalue of the matrixhas the dimensions of time, so in both the numerical simulations by solving E¢&3) and

it can be interpreted as a time constant indicating the rate d4) with the Newton—Raphson mettodnd the laboratory
the growth or decay of the response of the system. Thereforexperiments if we try to control either the displacement or
the stability analysis will mainly investigate the eigenvaluesthe loading at poine. However, in this case, by controlling

of the J in Eq. (37).

V. RESULTS AND DISCUSSION
A. Stiffness at equilibrium points

In the following numerical simulations of the spring sys-

tem in Fig. 2, we assumé=10/3 mm, §=30°, and ¢
=60° as initial conditions. Pre-load in the spritkg will
modify this geometry in the absence of an external forcezeroks elements. There are two possible buckling phenom-
Figure 4 shows the static characteristics of the mechanicaina whenk;# 0. One is the inner springsk{) undergoing
spring system without thk; springs, based on Eg1) and
(22) for x5 andxy, and Eq.(33) for F, in terms of the gen-
eralized coordinates, anglesand 8. Forks;=0 in Fig. 2, the
system is equivalent to a seriéReus$ composite cell. We
remark that Lakes and Drugashowed that this type of sys- dition, tuning ks will not increase the infinite-stiffness re-
tem is unstable if it is unconstrained. Geometrical nonlineargion, but will change the characteristics of the transition
ity is manifest in the calculation to include the effect of the from normal-stiffness to extreme-stiffness.

45 Am. J. Phys., Vol. 72, No. 1, January 2004

the generalized coordinateby hand, the curves can be nu-
merically constructed with a one-to-one relation betweaen
and the linear displacement,, and « and the loading-,
through Eqgs(32) and (33).

We next include theks springs so that the snap-through
can occur in the vicinity of zero applied load. Figures 5 and
6 show the post-buckling behavior of the system with non-

snap-through, and the other is the buckling of the outer
springs k3). Based on the chosen parameters, the extreme
overall stiffness occurs at the snap-through of the inner
springs. As shown in Fig. 6, under the chosen pre-load con-
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200 x, k=10 7 shows two other equilibrium configurations corresponding
' <%, k=5 to F,=0, indicated by double- and triple-primed symbols, in
which the double-primed symbols indicate that the system
exhibits extreme high effective stiffness at point

ot

w

(=]
T

—_

o3

o
T

B. Stability

w
S
T

For purely elastic cases, we can investigate the stability of
the critical equilibrium position of the spring model in Fig. 2
by the energy method. Equati¢20) is plotted as a surface in
Fig. 8 with respect to the displacements at poiatand b.

The parameters afe =10, k,=3, ky=5x10° N/m, f?=0,
f9=—30x10° N, f3=0, #=30°, and¢=60°. The magni-
tude of the massaw; andm, is irrelevant to the calculation

_1503. T T T T because of the quasi-static assumption. We see that the sur-

-10 0 10 20 30 40 50 60 face has a saddle shape at the critical equilibrium point,

Displacement, mm =0 mm andx,=10 mm. It is understood that the system is

Fig. 5. The load—displacement diagram for spring system in Fig. 2 kyith not Stab.le at the Saddl.e point as discussed in Ref. 9. The
spgrings varied, and r?o pre-load. Tr?e spring Eonsgtariltd{lfcand ks, %re P;.!O sys_tem Is not necessgr!ly free to _have any values.c.)f t,he co-
and 3x 10° N/m, respectively. The units fdt, are 16 N/m. ordinatesx, and x;; it is constrained by the equilibrium
equations. For example, applying Eq32) gives a
concave-up section of the saddle, which suggests stability in
the presence of perturbations in the fofeg. However, the
nqpplication of Eq.(33) with F,=0 gives a concave-down
section of the saddle surface in Fig. 8, indicating instability

Load at point a, 10°N
=)
T

LIII
S
T

-100 F

It is understood that each of the initial forcd§, f9, and
f9, is a free parameter: there are no equations relating the

I we specify the initial forces, the spring forcés, 1, :?md in the presence of perturbationsif. Both degrees of free-

fs will change, angj the geometry of the system will also jom myst be considered in an energy approach to determine
change. A nonzerd, as chosen here causes the geometry ofpe stability of this system.

the system to change accordingly. The same effect also could |t is not realistic to draw definite conclusions about the
be obtained by changing the initial configuration of the sys-stability from purely elastic models because in real materials,
tem, that is, adjusting and ¢ directly, with nonzero initial  viscoelastic effects cannot be neglected. Nonetheless, the
forces inside all the springs. Figure 7 shows the initial shap@quilibrium points with locally minimal energy before and
and the deformed shapafter pre-load of the spring model.  after snap-through are stable in accordance with Dirichlet’s
After applying the pre-load‘,g, and before applying any load theorem‘? which states an equilibrium point is stable if the
at pointa we can see that the system is deformed from theenergy of the system reaches a minimum. To probe the sta-
abcdto the a’b’cd configuration. Therefore, beforig, is  bility of this extreme phenomenon including considerations
applied, there are nonzero forces in all the springs. Also, Figof viscoelasticity, we focus on the behavior of the linearized
spring model in Fig. 3. In the calculation the parameters are
ky=10x10° N/m, k,=5%10° N/m, x,=5%x10° N/m, and
m;=m,=10 2 kg. Compliances are calculated under the
assumption of zero frequency & 0) to represent a quasi-
static deformation. The values for the masses will not change
the compliance calculation due to the quasi-static assump-
tion, but will strongly influence the eigenvalue calculation.
Figure 9 shows the familiar resonant- and anti-resonant-like
compliance curves, signatures of a system with negative in-
clusions, wherk, is tuned to be negative.

Because the frequency is assumed to be gstatic equi-
librium), the effects are not resonant. The response of the
spring model resembles that of a resonating system because
the inertial terms in a classic mass—spring system are oppo-
site in sign from the elastic terms. At sufficiently high fre-
quency, the negative effective stiffness associated with the
inertial terms suffices to cancel the elastic terms, giving rise
to resonant behavior; for a system with more than one degree
of freedom, anti-resonance occurs as well. The frequency
Displacement at point a, mm dependence and the negative sign in this case arise from the
second derivative of the displacement in Newton’s second
pre-load: the initial forces aré2=0, f9=—30x10°> N, and f3=0 with k‘r?w By cf:ontrast, thg negadtlve Stlf_fl_nhessf of a negagve SDJIng
initial #=30° and ¢=60°. The values ofk; and k, are 10 and 3 as no requem_:y epen e_nce' .e req.uency epenaence
% 10° N/m, respectively. The units fok; are 16 N/m. The straight line Pa” hQWGVGr _be introduced in negatlv_e sprlng_ SySte_mS by the
solutions, corresponding to no pre-load, are obtained from Edg.and :nC|US|0n of viscous elements, and will be briefly discussed
(16). ater.

No pre-load.

7
, ;/ No pre-load, ,
k=10 / =5

Load at point a, 10 3N

Fig. 6. The load—displacement diagram for the spring system in Fig. 2 witl
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Deformed configuration
after snap through with F,=0

Deformed configuration
after pre-load in ab spring applied with F,=0

Initial configuration
before pre-load applied Fig. 7. The change in the geometry of
a™ the spring system in Fig. 2 with pre-
load in spring 2(dimensions in milli-
meters. The un-primed symbols indi-
cate the initial configuration before the
9 pre-load is applied, the single-
primed symbols indicate the deformed
shape after the only pre-load is ap-
plied. Double-primed symbols indicate
PR . . the deformed shape for extreme large
\ Critical position for k1 Springs stiffness; triple-primed the deformed
d to achieve extreme large effective stiffness shape after snap-through.
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151
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The compliance between resonant and anti-resonant-likgreater than that with positive,. Theoretically, the overall
peaks in Fig. 9 is negative. Also, it is understood that thestiffness can reach infinity due to the presence of negative
compliance at node 2 can be considered as the effective comgtiffness elements. Atx;~—3.2x10° N/m, the system
pliance of the system as a whole. At zero frequency, theeaches its highest compliance because the amount of nega-
magnitude of the viscosity will not change the compliancetjye stiffness neutralizes that of the positive stiffness element
calculation, as can be seen in Eg6). The lowest compli- iy element 1 to the left in Fig. 2. It is not surprising that the
ance indicates the highest stiffness and vice versa. Based @fighest peaks of both compliance curves occur at the same
the numerical resolution adopted in this analysis, which issmount of negative stiffness in element 1 because the stiff-
determined by a pre-chosen increment for the tuning paramsess of this element dominates the relative motion of the
eter, x;, the highest overall stiffness around the anti-nodes to the fixed end. Also in Fig. 9, we can see the stability
resonant-like peaks;~ —3.7x 10° N/m) is about 20 times of the system from the trajectories of the only eigenvalue
with a positive real part. The eigenvalues are calculated from
Eq. (37). Figure 9b) is an expanded version of Fig(&) for
the trajectories of the eigenvalue. It can be seen that when
k1> —3.2x10° N/m, the system is stable for various vis-
cosities because there are no eigenvalues with a positive real
part. Although there is an eigenvalue with non-negative real
part whenk;< —3.2x 10° N/m, its magnitude can be made
to be as small as desired by increasing the viscosity in the
system. Therefore, around the point of intereg{~ — 3.7
x 10° N/m), which gives rise to extreme positive overall
stiffness, the system is in a metastable state. The root-locus
plot of all eigenvalues with =10 and =100
x10° (Nm~1s), respectively, is shown in Fig. (). The
arrows indicate the direction of the movement of the eigen-
values with respect to the tuning parameter,A detailed
root-locus plot for the only eigenvalue with a positive real
part is shown in Fig. 1®). Again, the system is metastable
because the only eigenvalue with a positive real part can be
made small by a choosing a high viscosity.

As for the frequency response of the effective overall dy-
namic compliance, that is, the dynamic compliance at node
2, Fig. 1Xa) shows the results of the calculation assuming
that =10x10° (Nm™!s) and «,/k;=—5, with various
k1. It can be seen that for this set of parameters, wkgen
Fig. 8. Two-dimensional energy landscape of the spring model in Fig. 2_: —15x10° N/m, the overall Qynamlc stiffness dramatlca"y
with respect tox, andx, with no force at pointa or b. k,;=10x 1, k, increases as the frequency increases. However, when
=3X 10, ky=5x10° N/m, f9=0, f3=—-30x10°* N, andf3=0. —10x10° N/m, the overall dynamic stiffness decreases with
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Fig. 9. Compliance and stability analysis of the spring model in Fig; 3.10x 10°, k,=5x10°, andx,=5x10° N/m are fixed parameter&) Eigenvalues
on log scale(b) Eigenvalues on linear scale showing sign change at the criticaData for»= 106 are omitted. The viscosity is in units of 16 Nm™?s.
Increasing the viscosity decreases the degree of instability. The eigenvalues are calculated @ Ehe compliances are calculated from E86) with
w=0.
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Fig. 10. Root-locus plots with the tuning parametgraround the extreme  Fig. 11. (a) Compliance vs frequency with various for the spring model
high stiffness statek;=10x10°, k,=5X10°, x;=—3.7x1C°, and «, in Fig. 3 with =10x10° (Nm~'s) andk,/x;=—5. «'s are in units of

=5x10° N/m. (a) All eigenvalues. Closed symbolg:=10; open symbols: 106 N/m. (b) Quasi-static compliance of model in Fig. 3 witty/x;=
7=100. The viscosityy is in units of 16 N m™~'s. The arrows indicate the _5,

increase ofy. (b) Trajectory of the only eigenvalue with a positive real part.
Stability corresponds to the real p&aRe) of all eigenvalues less than zero.
Instability corresponds to the real part of an eigenvalue greater than zero. A

zijafg:l:teyntly small positive real part of an eigenvalue corresponds to metai”nentioned, the presence of a sinusoidal driving force will not
' change the nature of stability when the applied force is
bounded in the time domain and its frequency is not the

natural frequency of the system.

frequency. The increase or decrease of the dynamic stiffnesgl. SUMMARY

with frequency is due to the response of the viscous element ) )
and is not due to inertial effects, because the masses areAS €xpected, agreement between the linear and geometric

assumed to be 102 kg in the calculation. In addition, the nonlinear analysis for small displacement is observed. By a

frequency dependence is minimal when the amount of negEFgorous geometric nonlinear analysis, the effect of a pre-

tive stiffness is smalifor example,<;=0) or large(for ex oad contributing to negative stiffness was identified. In this
Pl S -

- . way the idea of using a negative value for the stiffness in
ample, ;= —20X10° N/m) in the calculated frequency .Hooke’s law was presented. Changing initial configurations

range. For comparison, with _the same ass_umption, that 'Sf the model, such a8, ¢, or the stiffness of the springs, in
kz/ky=—3, the corresponding quasi-static response ighe geometrical nonlinear analysis will not eliminate the ex-
shown in Fig. 11b) as a function ofk;. The value of the  treme behavior, provided we choose different values for the
node 2 compliance between the resonant-like and antifree tuning parameters, the pre-loads. The results of the geo-
resonant-like peaks is negative, and compliance of node 1 igetric nonlinear analysis verify the possibility of achieving
negative forx, less than that corresponding to the pédat  extreme stiffness system with negative stiffness components.
is, Kk~ —7x10° N/m). The stability of the system at a cer- Theoretically, the effective stiffness can approach infinity.
tain frequency has the same characteristics as that analyzedAn unconstrained negative stiffness element is unstable.
before under the quasi-static assumption. In other wordsRigorous stability analysis via the energy method and
driving the system with a sub-resonant frequency will notLyapunov’s indirect method reveals that the present elastic
increase or decrease the degree of stability of the system. Asodel of spring networks with a negative stiffness element is
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