
Introduction

Constitutive equations

In linearly viscoelastic materials, the constitutive equa-
tion relating time dependent stress r(t) and time
dependent strain e(t), is a Boltzmann integral:

r tð Þ ¼
Z t

0

E t� sð Þ de sð Þ
ds

ds; e tð Þ ¼
Z t

0

J t� sð Þ dr sð Þ
ds

ds:

ð1Þ

where J(t) is the creep compliance as it depends on time
t, and E(t) is the relaxation modulus.

Many constitutive models have been developed to
describe the nonlinear viscoelastic behavior of materials;
see Schapery (1969) and Findley et al. (1976). Models
described by Johnson et al. (1996) are for large defor-

mations and Pioletti et al. (1998) take into account the
strain rate. In the present study we consider a single-
integral form called nonlinear superposition. This allows
the relaxation function to depend on strain level and
creep to depend on stress:

r tð Þ ¼
Z t

0

E t� s; e sð Þð Þ de sð Þ
ds

ds;

e tð Þ ¼
Z t

0

J t� s; r sð Þð Þdr sð Þ
ds

ds: ð2Þ

A particular form of this, due to Fung (1972), assumes
the strain-dependent modulus is separable into the
product of a function of time and a function of strain:

E t;eð Þ ¼ Et tð Þg eð Þ: ð3Þ
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This form has been used widely in the modeling of soft
biological tissues, which are nonlinearly viscoelastic. In
view of the separable nature of this formulation, it has
been referred to as quasi-linear viscoelasticity (QLV).
Since in QLV, the time-dependence is separated from the
strain-dependence, all the relaxation curves must have
the same shape, in general, or the same slope if they
exhibit a power-law response. In the more general single-
integral nonlinear formulation used here, the shape or
slope of the relaxation curves can depend on strain level.
It has been shown by Kwon and Kwang (2001), in the
case of fluids, that both the differential and integral
constitutive equations based on time-strain separability
have either Hadamard or dissipative type instabilities.
Hadamard instabilities are associated with rapid elastic
response. Dissipative instabilities are related to the dis-
sipative viscous nature of the constitutive equations.
Both these conditions relate the quality of rheological
equations to the laws of thermodynamics. Therefore, the
separability hypothesis is invalid for short time periods
and is not free of mathematical instabilities.

Multiple integral nonlinear formulations allow for
interaction terms when the load or deformation history
contains multiple steps (see Findley et al. 1976). For
example, a creep and recovery experiment contains two
steps.

Interrelation of creep and relaxation

The relationship between creep J(t) and relaxation E(t)
in linearly viscoelastic materials is readily obtained via
Laplace transformation (see Gross 1968):

Z t

0

J t� sð ÞE sð Þds ¼
Z t

0

E t� sð ÞJ sð Þds ¼ t: ð4Þ

Explicit relationships can be obtained from this implicit
form via Laplace transformation provided an explicit
form is given for E(t) or J(t). Power law behavior in time
is particularly simple:

E tð Þ ¼ At�n; ð5Þ

with n and A as constants.
The corresponding creep function, with G as the

gamma function, is

J tð Þ ¼ 1

AC 1� nð ÞC nþ 1ð Þ t
n: ð6Þ

Equivalently,

E tð Þ ¼ sin np
np

1

J tð Þ : ð7Þ

For a relaxation function consisting of a single
exponential plus a constant, the corresponding creep

function also contains an exponential, but the creep time
constant is longer than the relaxation time constant.

Creep and relaxation are both aspects of the time
sensitive behavior of materials, therefore it should be
possible to predict one from the other for nonlinear
materials as well as for linearly viscoelastic materials
considered above. The rationale for seeking an interre-
lation between creep and relaxation is as follows.
Relaxation tests in which a constant strain must be
maintained are more difficult to perform than creep tests
where stress is kept constant. Creep tests can be per-
formed with a simple dead weight system. By contrast,
relaxation tests usually make use of a more complex and
costly servo-controlled system. Thus, it would be desir-
able to perform creep tests and predict the relaxation
behavior through a constitutive model. However, inter-
relation of creep and relaxation for nonlinear materials
is not as straightforward as in the linear case.

Many suggested interrelations do not involve super-
position. Although they cannot be applied to the general
load histories that occur in the body, several are dis-
cussed here for completeness. For example, the interre-
lation of Ashby and Jones (1980) assumes secondary
creep, de/dt=Brn, and that the total strain e is regarded
as the sum of an elastic part eelastic=r/E and a creep part
ecreep. Observe that this does not allow for primary
creep or for any linearly viscoelasticity at small strain.
The creep is nonlinear at the outset, with no linear
term. Ashby and Jones differentiate this and substitute,
then integrate from an from an initial stress r0 at time
t=0 to a final stress rf at time t, to obtain the stress
relaxation

rf tð Þ ¼ BE n� 1ð Þtþ 1=rn�1
0

� �� ��1= n�1ð Þ
:

The resulting stress relaxation is nearly constant at
short time. For n=2, a quadratic nonlinearity, relaxa-
tion goes as 1/t at sufficiently long time. Other methods
which ignore primary creep were reviewed by Popov
(1947).

The interrelation developed by Popov (1947) assumes
creep strain as a separable function of time and stress,
given as

ep ¼
s1
E

er=s1 � 1
� �

T

where T=Ctm is a function of time t and s1 is a constant.
This is a specific type of nonlinearity and time depen-
dence.

The differentiated equation of their relaxation func-
tion was

dee
dt
þ dep

dt
¼ 0

where ep is the plastic strain and ee is the elastic strain,
with
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dep
dt
¼ � 1

E

dr
dt
:

The creep strain is differentiated and equated to the
above form which gives

dr ¼ �s1
er=s1 � 1

1þ Ter=s1
dT:

This is to be arithmetically integrated from zero time
and initial stress to give the relaxation function. The
final result of the relaxation function which should be
obtained by integration is not given explicitly. Also there
is no experimental support for the theory.

The Ashby and Popov analyses appear simple in
view of the fact that the interrelation between creep
and relaxation for linear materials (which are simpler
than nonlinear ones) involves a convolution integral as
seen in Eq. (4). The simplifying assumption is that the
same relation between stress and creep strain rate is
valid both under conditions of constant stress (specifi-
cally, secondary creep) and constant strain (relaxation).
The material may not in fact behave this way. Indeed,
the Ashby analysis for secondary creep does not in-
clude linear viscoelasticity at small load or primary
creep at intermediate load. As for the Popov analysis,
Lakes and Vanderby (1999) showed that a separable
form for creep leads to a non-separable form for
relaxation.

Arutyunyan (1966) wrote non-linear creep in the
form of a non-linear differential equation, with the
prime denoting a time derivative

r0 tð Þ þ ar tð Þ þ br2 tð Þ ¼ E0 e0 tð Þ þ ce tð Þ½ �

This is a rather specific nonlinearity.
After separating the variables and integrating from

an initial stress rx(s1) at time s1 to a final stress rx(t) at
time t,

rx tð Þ ¼ n1
1� a1e�b n1�n2ð Þ t�s1ð Þ

1� a2e�b n1�n2ð Þ t�s1ð Þ ;

where a1 ¼ n2
n1

a2 and a2 ¼ rx s1ð Þ�n1
rx s1ð Þ�n2

. Since b(n1–n2)>0,
rx(t) will decrease with time.

The method used above is very complex and there is
no use of superposition in the formulation. Also there is
no experimental support to the theory.

Touati and Cederbaum (1997) presented a complex
and laborious numerical method to convert the Scha-
pery creep model into a set of first order nonlinear
equations to predict relaxation. The Schapery model is a
single integral constitutive equation with a separable
kernel. Again, Lakes and Vanderby (1999) showed that
a separable form for creep leads to a non-separable form
for relaxation. Guth et al. (1946) emphasizes stress strain

curves for rubber at different temperature in which a
separable integral equation is briefly mentioned. The
inversion proposed by them is not based on superposi-
tion, is not supported by analysis, and it does not even
properly reduce to linear viscoelasticity as a special case
of nonlinearity.

Findley and Lai (1968) have used a multiple integral
formulation to interrelate creep and relaxation. Their
method utilizes as a first approximation an inversion of
a function obtained from multiple integral equation
describing creep at constant stress. It is an extension of
the linear superposition principle by addition of non-
linear effects in the form of multiple integrals. It is
intended for weakly nonlinear materials and does not
incorporate explicit superposition in a Stieltjes integral.
A product form of kernel functions with time depen-
dence A+Btn+Ct2n was used. Parameters in the kernel
functions were determined experimentally for a poly-
mer. A cubic function was used to model the nonlin-
earity,

e tð Þ ¼ K1 tð ÞrþK2 tð Þr2 þK3 tð Þr3:

The initial analysis is by the inversion of a power
series as a first approximation. Specifically, inversion of
the above series to yield r as functions of e and K giving
rise to the following form:

r tð Þ ¼ f1 tð Þeþ f2 tð Þe2 þ f3 tð Þe3 where
f1 tð Þ ¼ 1=K1 tð Þ
f2 tð Þ ¼ �K2 tð Þ= K1 tð Þ½ �3:
f3 tð Þ ¼ 2K2

2 tð Þ �K1 tð ÞK3 tð Þ
� �

= K1 tð Þ½ �5:

This was inserted in the product form of kernel
functions to obtain a new value for strain. Deviation
between the new value and constant value served as an
input to a numerical approach obtain a second
approximation of the stress function. Ordinarily the
multiple integral constitutive equations are used to
handle stress histories containing multiple steps. For
creep or relaxation there is only one step, so a simpler
formulation would suffice.

In contrast to the above, we develop herein interre-
lations based on explicit analysis of superposition within
a single integral (non-separable) nonlinear superposition
integral constitutive equation.

Ligaments

Ligaments are soft connective tissues composed of clo-
sely packed, parallel collagen fiber bundles that are
oriented to provide motion and stability (Kastelic et al.
1978). They exhibit time and history dependent stress-
strain behavior that is characteristic of viscoelastic
materials; see Johnson et al. (1996). Viscoelasticity and
nonlinearities in the tissue’s mechanical response are
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important factors in its physiological functions. Creep of
ligament is important since load histories in the body
contain a static component. Relaxation is relevant to
certain stretching exercises for athletic activity.

It has recently been shown that quasi-linear visco-
elasticity is insufficient to account for nonlinear mate-
rial behavior in ligament. In the quasi-linear
viscoelasticity (QLV) model of Fung, which is a com-
monly used phenomenological model of ligament vis-
coelastic behavior, the relaxation function is separable
into the product of a function of time and a function of
strain as shown in Eq. (3) above. In Fung’s model, the
stress is clearly dependent on strain level, but strain
does not affect its time dependence. In a graphical
form, a purely strain-dependent elastic nonlinearity in
QLV manifests itself in the overall height of the
relaxation curve and time-dependence manifests itself
in the shape of the curve.

Thornton et al. (1997) observed that relaxation in
ligament proceeds more rapidly (a greater slope on a log
log scale) than creep, a fact not explained by linear
viscoelasticity. Lakes and Vanderby (1999) demon-
strated via continuum concepts of nonlinear viscoelas-
ticity that such a difference in rate between creep and
relaxation occurs when the nonlinearity is of a strain-
stiffening type, i.e., the stress-strain curve is concave up
as observed in ligament. This was done by developing an
interrelation between creep and relaxation, assuming a
separable (QLV) model for the creep. The separable
form of creep

J t;rð Þ ¼ g1 þ g2rþ g3r
2 þ . . .

� �
tn; ð8Þ

gives rise to a non-separable relaxation function

E t;eð Þ ¼ f1t
�n þ f2et

�2n þ f3e
2t�3n þ . . .

� �
np= sin npð Þ:

ð9Þ

Here, f1=(1/g1) as in the linear case, and f2=)(f1g2/g1
2).

Therefore even if a material were found which obeys
QLV in creep, it would not obey QLV in relaxation. As
for ligament, experiments by Provenzano et al. (2001)
showed creep rates (slope on a log-log plot of primary
creep) to depend on load level, therefore QLV does not
apply to ligament. Pioletti and Rakotomanana (2000)
considered the QLV time-strain separability hypothesis
but they did not deal directly with the viscoelastic func-
tions. Figures of stress relaxation in Pioletti and Rako-
tomanana (2000) plotted clearly show that there is a
strain dependence so a separable time-strain form as in
the QLV model is only an approximation to the actual
behavior.

One causal mechanism for the nonlinearity observed
in ligament is its fibril arrangement. Under unloaded
conditions the microstructure has a wavy appearance,
also known as crimp (see Viidik 1968). Collagen fibrils

are arranged in varying degrees of crimp such that
increasing tensile deformation results in recruitment of
additional load bearing fibrils to resist tensile stress. The
stress-strain curves of ligament display a concave-up
‘‘toe’’ region where fibers straighten and elongate in a
strain-stiffening fashion until they are no longer
crimped. Differences in the rates between creep and
relaxation are due to this strain-stiffening type of non-
linearity (Lakes and Vanderby 1999).

A number of major factors which can affect the
biomechanical and biochemical properties of a ligament
include temperature, hydration, aging, immobilization,
exercise, irradiation. The movement of fluid within the
tissues as well as into and out of the tissues are impor-
tant factors in the transient behavior of ligaments.

The objective of this paper is to develop an analytical
interrelation between creep and relaxation for nonlin-
early viscoelastic materials such as ligament. The inter-
relation is based on a single-integral, nonlinear
superposition, viscoelastic model with a non-separable
form for relaxation. Several formulations of the model
are developed as well as validity analysis for each for-
mulation. The interrelation is applied to experimental
data for ligament and metal alloy.

Analysis

Method of interrelation in nonlinear superposition

The single-integral constitutive equation used here is
nonlinear superposition. It allows the relaxation func-
tion to depend on strain level. Unlike QLV, the slope or
the shape of the relaxation curve, not just its magnitude,
can depend on strain:

r tð Þ ¼
Z t

0

E t� s; e sð Þð Þ de
ds

ds: ð10Þ

Time-dependent strain due to constant creep stress
can be written as a sum of immediate and delayed
Heaviside step functions in time H(t):

e tð Þ ¼ e 0ð ÞH tð Þ þ
XN
i¼0

DeiH t� tið Þ: ð11Þ

This decomposition of creep is illustrated in the top
diagram of Fig. 1. Each step strain in the summation
gives rise to a relaxing component of stress in view of the
definition of the relaxation function. Nonlinearity is
accommodated in this analysis since the relaxation
function E explicitly depends on strain level:

r ¼ e 0ð ÞE t;e 0ð Þð Þ þ
XN
i¼0

DeiE t� ti; e tið Þð Þ: ð12Þ
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This is shown in the bottom diagram of Fig. 1. Here
we assume there is no effect from interactions between
the step components; hence we consider single-integral
type nonlinear response (Lakes and Vanderby 1999) and
exclude response which must be describable by a mul-
tiple integral formulation.

Dividing by r and using the definition of creep
compliance,

1 ¼ J 0; rð ÞE t; e 0ð Þð Þ þ
XN
i¼0

DJiE t� ti; e tið Þð Þ: ð13Þ

Pass to the limit of infinitely many fine step compo-
nents to obtain a Stieltjes integral, with s as a time
variable of integration:

1 ¼ J 0; rð ÞE t; e 0ð Þð Þ þ
Z t

0

E t� s; e sð Þð Þ @J s; rð Þ
@s

ds: ð14Þ

The creep compliance J is a function of time and
stress. As in the linear interrelation, the time dependence
appears in the integral as dependence on a time variable
of integration. Since for creep under constant stress,
r(t)=0 for t<0 and r(t)=r for t>0, we have
e(t)=rJ(t,r), so Eq. (14) becomes

1 ¼ J 0; rð ÞE t; rJ 0; rð Þð Þ

þ
Z t

0

E t� s; rÞJ s; rð Þð Þ @J s; rð Þ
@s

ds:
1

2

ð14:1Þ

For the linear case this implicit relationship is equiva-
lent to Eq. (4) as can be shown by Laplace transforma-
tion. To develop an explicit relationship between creep
and relaxation, one assumes a particular functional form
for one of the viscoelastic functions. For example, Lakes
and Vanderby (1999) used this Stieltjes integral to show
that a separable formof creep gives rise to a non-separable
relaxation function as described above.

Equation (14) can also be derived in the following
way as was suggested by the reviewer. Superposition is
still assumed in this approach since it is embodied in the
superposition integral used as a starting point:

r tð Þ ¼
Z t

0

E t� s; e sð Þð Þde sð Þ
ds

ds: ð14:2Þ

For creep under constant stress, r(t)=0 for t<0 and
r(t)=r for t>0 we have

e tð Þ ¼ rJðt;rÞ ð14:3Þ

Integration by parts of Eq. (14.2) leads to

r tð Þ ¼ E 0; e tð Þð Þ:e tð Þ �
Z t

0

@E t� s; e sð Þð Þ
@s

:e sð Þds ð14:4Þ

Inserting Eq. (14.3) into Eq. (14.4) gives

r tð Þ ¼ E 0; rJ t; rð Þð Þ:rJ t; rð Þ

�
Z t

0

@E t� s; rJ s; rð Þð Þ
@s

rJ s; rð Þds
ð14:5Þ

Dividing Eq. (14.5) by r leads to Eq. (14.6) which is
the same as Eq. (14.1):

1¼ J 0;rð ÞE t;rJ 0;rð Þð Þþ
Z t

0

E t� s;rÞJ s;rð Þð Þ@J s;rð Þ
@s

ds:

ð14:6Þ

Thus far, the analysis is exact within the nonlinear
superposition constitutive form assumed. To obtain ex-
plicit interrelations, several explicit time dependent
functions are assumed. Approximations are made at this
point since expansions are truncated to low order terms.
In the following, various non-separable creep functions

Fig. 1 Top: decomposition of a creep function J(t, r0) as a sum of
immediate H(t) and delayed Heaviside step functions H(t)ti) in
time t. Bottom: the constant stress r0’ which is the same as r’ in the
text gives rise to creep expressed as a sum of relaxing components,
each of which comes from a step function in the decomposition of
the creep curve above

561



involving power laws in time are considered for primary
creep. Power laws are used since they are suitable for
modeling the behavior of materials of interest. Power
law terms have the limitation that the modulus tends to
infinity as time tends to zero, an unrealistic situation.
Since experimental data used for comparison are avail-
able over a limited window of the time domain, this
asymptotic behavior is not obtrusive. A semi-inverse
approach is used in the analysis.

Two-term nonlinear formulations

Formulation 1

Assume the creep behavior to be as follows, and restrict
the analysis to first order in stress throughout:

J t; rð Þ ¼ g1t
n þ g2r tn þAt2n

� �
: ð15Þ

We assume a non-separable power law form of
relaxation, given as

E t; eð Þ � f1t
�n þ f2e tð Þ t�n þ t�2n

� �
ð16Þ

In the following, it is shown that f1=sin np/npg1 as in
the linear case, and f2=)(f1g2/g1

2) and A is obtained in
terms of a function involving gamma functions of n.

The derivative of the creep function is

@J s; rð Þ
@s

¼ ng1s
n�1 þ ng2rsn�1 þ 2nAg2rs2n�1: ð17Þ

Since creep strain is

eðtÞ ¼ JðtÞr ð18Þ

from Eqs. (15) and (18) we get

e tð Þ ¼ g1rt
n þ g2r

2 tn þAt2n
� �

ð19Þ

Since we are conducting a first order analysis in r, we
ignore the r2 term in Eq. (19). The two term form in
Eq. (15) does not have any r2 component. Substitute
g1rt

n in Eq. (16) to obtain

E t; e tð Þð Þ ¼ f1t
�n þ f2g1rþ f2g1rt

�n ð20Þ

Again, this is first order in stress. A second order
formulation retaining the r2 term is used to develop a
relation between the third coefficient g3 in creep and f3 in
relaxation as given in Formulation 4 below.

Now, substituting Eqs. (20) and (17) into Eq. (14)
and recognizing that the first term in the Stieltjes integral
vanishes (J(0)=0),

1 ¼
Z t

0

f1 t� sð Þ�n þ f2g1rþ f2g1r t� sð Þ�nf g

ng1s
n�1 þ ng2rsn�1 þ 2nAg2rs2n�1

� �
ds: ð21Þ

Now we equate r independent terms to 1 and all r
dependent terms to 0 from Eq. (21):

1 ¼ f1g1

Z t

0

n t� sð Þ�nsn�1ds

1 ¼ f1g1
1

sin np
np: ð22Þ

The integral portion has the form 1
sin np np
� �

and is
shown in Appendix A.

Adding all the r dependent terms together, and
ignoring powers of r greater than 1,

0 ¼ f1g2
1

np
sin npþ f2g

2
1

1

np
sin np

	 


þ f1g2A2n
C �nþ 1ð ÞC 2nð Þ

C nþ 1ð Þ

	 

þ f2g

2
1

	 

tn ð23Þ

The proof of solving the above integral is shown
explicitly in Appendix B, resulting in

f1g2 þ f2g
2
1 ¼ 0 ð24Þ

and

f1g2A 2n
C �nþ 1ð ÞC 2nð Þ

C nþ 1ð Þ

	 

þ f2g

2
1 ¼ 0 ð25Þ

For Eq. (25) to be equal to Eq. (24),

A ¼ C nþ 1ð Þ
2n C �nþ 1ð ÞC 2nð Þ : ð26Þ

Therefore f1g2+f2g1
2=0, and

f2 ¼ �
f1g2
g21

� �
ð27Þ

So, given a set of creep curves, prediction of the
relaxation behavior is possible by following the interre-
lation of their coefficients obtained by the above for-
mulation. In this formulation, the nonlinear term gives a
steeper slope than the linear term. It is most suitable for
materials such as metals (Kraus 1980) in which creep
accelerates with an increase in stress. It is not appro-
priate for materials such as ligament (Provenzano et al.
2001) in which creep is slower at elevated stress.

Formulation 2

Assume

J t; rð Þ ¼ g1t
n þ g2rt

n=2 ð28Þ

Using the semi-inverse approach, the power of time
in the second term of Eq. (29) must be )5n/2 for reasons
which become obvious in formulation 3. Specifically,
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different powers of time are obtained in Eq. (34) which is
the r dependent part of the Stieltjes integral for any
value other than )5n/2.

So

E t; eð Þ � f1t
�n þ f2e tð Þt�5n=2 ð29Þ

In the following, f2 is found in terms of f1 , g1, g2 and
n. The derivative of the creep function is

@J s; rð Þ
@s

¼ ng1s
n�1 þ n

2
g2rs n=2ð Þ�1: ð30Þ

Since

e tð Þ ¼ J tð Þr
So e tð Þ ¼ g1rt

n þ g2r
2tn=2

Again, since this formulation is first order in stress,
powers of r greater than 1 are ignored,

E t; e tð Þð Þ ¼ f1t
�n þ f2g1rt

�3n=2 ð31Þ

J(0)=0. The first term in the Stieltjes integral
vanishes.

Substituting Eqs. (31) and (30) in the Stieltjes
integral,

1 ¼
Z t

0

f1 t� sð Þ�n þ f2g1r t� sð Þ�3n=2
n o

ng1s
n�1 þ n

2
g2rs n=2ð Þ�1

n o
ds: ð32Þ

Now we equate ‘r’ independent terms to 1 and all ’r’
terms to 0 from Eq. (32):

1 ¼ f1g1

Z t

0

n t� sð Þ�nsn�1ds:

1 ¼ f1g1
1

sin np
np ð33Þ

Now we take all the ’r’ terms:

0 ¼ f1g2
n

2

C �nþ 1ð ÞC n
2

� �
C �n

2 þ 1
� �

( )
þ f2g

2
1n

C �3n
2 þ 1

� �
C nð Þ

C �n
2 þ 1
� �

( )

ð34Þ

Canceling out the common terms from Eq. (34) we
get

0 ¼ f1g2
C �nþ 1ð ÞC n

2

� �
2

	 

f2g

2
1 C

�3n
2
þ 1

� �
C nð Þ

	 


Therefore solving for f2, we obtain

f2 ¼
�f1g2C �nþ 1ð ÞC n

2

� �
2g21C

�3n
2 þ 1

� �
C nð Þ

ð35Þ

The ratio
C �nþ1ð ÞC n

2ð Þ
2C �3n

2 þ1ð ÞC nð Þ in Eq. (35) is almost equal to 1

so for small values of slope n, the relation reduces to

f2 ¼
�f1g2
g21

ð36Þ

This formulation gives a very flat curve for the liga-
ment creep data as the value of g2 obtained is negative
and the slope of the second time term is n/2. So in the
following formulation, the power of the second time
term was kept independent of ‘n’ providing more flexi-
bility in fitting ligament creep data which correspond-
ingly helps in making a better prediction of relaxation.

Formulation 3

Assume

J t; rð Þ ¼ g1t
n þ g2rt

m ð37Þ

Now assume

E t; eð Þ � f1t
�n þ f2e tð Þt�q ð38Þ

in which f2 and q are to be determined by the analysis. It
is shown that f1=(1/g1)(sin np/np) and that q=3n)m.

The derivative of the creep function is

@J s; rð Þ
@s

¼ ng1s
n�1 þmg2rsm�1 ð39Þ

Since

e tð Þ ¼ J tð Þr
So e tð Þ ¼ g1rt

n þ g2r
2tm

ð40Þ

Again since this formulation is first order in stress,
powers of greater than 1 are ignored,

E t; e tð Þð Þ ¼ f1t
�n þ f2g1rt

�qþn

J 0ð Þ ¼ 0;
ð41Þ

since the power law form requires the first term in the
Stieltjes integral to vanish.

Substituting Eqs. (41) and (39) in the Stieltjes integral
(Eq. 14), we get

1 ¼
Z t

0

f1 t� sð Þ�n þ f2g1r t� sð Þ�qþn
� �

ng1s
n�1 þmg2rsm�1

� �
ds: ð42Þ

Now we equate ’r’ independent terms to 1 and all ’r’
terms to 0 from Eq. (42):
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1 ¼ f1g1

Z t

0

n t� sð Þ�nsn�1ds:

1 ¼ f1g1
1

sin npnp
: ð43Þ

So the relation between f1 and g1 is the same as in the
linear case.

Now we take all the ‘r’ terms:

0 ¼ f1g2m
C �nþ 1ð ÞC mð Þ
C m� nþ 1ð Þ

	 

tm�n

þ f2g
2
1n

C �qþ nþ 1ð ÞC nð Þ
C �qþ 2nþ 1ð Þ

	 

t�q þ 2n ð44Þ

For Eq. (44) to be compatible, the power of t has to
be the same so

m� n ¼ �qþ 2n

q ¼ 3n�m:
ð45Þ

This is the slope of the predicted relaxation curve.
Substituting Eq. (45) into Eq. (44), we obtain

0 ¼ f1g2m
C �nþ 1ð ÞC mð Þ
C m� nþ 1ð Þ

	 

tm � n

þ f2g
2
1n

C m� 2nþ 1ð ÞC nð Þ
C m� nþ 1ð Þ

	 

tm�n ð45Þ

Canceling out the common terms from the above
equation and solving for f2, we obtain

f2 ¼
�f1g2mC �nþ 1ð ÞC mð Þ
ng21C �2nþmþ 1ð ÞC nð Þ : ð46Þ

This gives the amplitude of the predicted relaxation
curve.

The procedure for curve fitting nonlinear data to
obtain g1, g2, n, and m is described later. A strain stiff-
ening nonlinearity such as that seen in ligament forces g1
to be positive and g2 to be negative in Eq. (37). Since the
predicted relaxation slope is q=3n)m, this model also
shows relaxation proceeds more rapidly (a greater slope
on a log log scale) than creep as a result of the strain-
stiffening nonlinearity provided 3n)m>m. Results of
the interrelation for ligament using the above formula-
tion are shown in Figs. 4 and 5.

Three-term nonlinear formulation

Formulation 4

The above procedure is again followed with a more
complex creep function J(t,r). A, B, W, X, and Y are
constants:

J t; rð Þ ¼ g1t
n þ g2r tn þAt2n

� �
þ g3r

2 tn þAt2n þ Bt3n
� �

ð47Þ

@J s;rð Þ
@s

¼ng1sn�1þng2rsn�1þ2nAg2rs2n�1

þng3r2sn�1þ2nAg3r
2s2n�1þ3nBg3r2s3n�1 ð48Þ

E t; eð Þ � f1t
�n þ f2e tð Þ t�n þXt�2n

� �
þ f3e tð Þ2 Wt�n þXt�2n þYt�3n

� �
ð49Þ

Using Eqs. (18) and (47) we get

SoE t;eð Þ¼f1t�nþf2 t�nþXt�2n
� �

g1rt
nþg2r2 tnþAt2n

� �� �
þf3 Wt�nþXt�2nþYt�3n

� �
g21r

2t2n
� �

ð50Þ

Substituting Eqs. (48) and (50) in the Stieltjes integral
given by Eq. (14) and knowing that J(0) term in it
vanishes we get

1¼
Z t

0

ff1 t�sð Þ�nþf2g1rþf2g1Xr t�sð Þ�nþf2g2r2

þf2g2Xr2 t�sð Þ�nþf2g2Ar2 t�sð Þnþf2g2AXr2

þf3g1W2r2 t�sð Þnþf3g21WXr2

þf3g21WYr t�sð Þ�ngfng1sn�1þng2rsn�1þ2nAg2rs2n�1

þng3r2sn�1þ2nAg3r
2s2n�1þ3nBg3r2s3n�1gds:

ð51Þ

Again, ‘r’ independent terms are equated to 1 and all
‘r’ dependent terms to 0:

1 ¼ f1g1

Z t

0

n t� sð Þ�nsn�1ds:

1 ¼ f1g1
1

sin np
np

ð52Þ

Now we take all the ‘r’ terms:

0 ¼ f1g2
1

sin np
npþ f2Xg21

1

sin np
np

	 


þ f1g2:A:2n
C �nþ 1ð ÞC 2nð Þ

C nþ 1ð Þ

	 

þ f2g

2
1

	 

tn ð53Þ

So from Eq. (53) we get Eqs. (54) and (55)

f1g2
1

sin np
npþ f2Xg21

1

sin np
np ¼ 0 ð54Þ

f1g2:A:2n
C �nþ 1ð ÞC 2nð Þ

C nþ 1ð Þ

	 

þ f2g

2
1 ¼ 0 ð55Þ
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Now we take all the ’r2’ terms:

0¼ f1g3
1

sinnp
npþ2f2g1g2X

1

sinnp
npþWf3Yg31

1

sinnp
np

	 


þ f1g3A2n
C �nþ1ð ÞC 2nð Þ

C nþ1ð Þ

	 
	

þ 2þAþAX2n
C �nþ1ð ÞC 2nð Þ

C nþ1ð Þ

	 

 �
f2g1g2þWf3Xg31



tn

þ
	
f1g3B3n

	
C �nþ1ð ÞC 2nð Þ

C 2nþ1ð Þ




þf2g1g2 AþAn

	
C nþ1ð ÞC nð Þ

C 2nþ1ð Þ



 �

þWf3g
3
1n

	
C nþ1ð ÞC nð Þ

C 2nþ1ð Þ




t2n ð56Þ

From Eq. (56) we get Eqs. (57), (58), and (59):

f1g3
1

sin np
npþ 2f2g1g2X

1

sin np
np

þWf3Yg31
1

sin np
np ¼ 0 ð57Þ

f1g3A2n
C �nþ1ð ÞC 2nð Þ

C nþ1ð Þ

	 


þ 2þAþAX2n
C �nþ1ð ÞC 2nð Þ

C nþ1ð Þ

	 

 �
f2g1g2þWf3Xg31¼0

ð58Þ

f1g3B3n
C �nþ 1ð ÞC 2nð Þ

C 2nþ 1ð Þ

	 


þ f2g1g2 AþAn
C nþ 1ð ÞC nð Þ

C 2nþ 1ð Þ

	 

 �

þWf3g
3
1n

C nþ 1ð ÞC nð Þ
C 2nþ 1ð Þ

	 

¼ 0 ð59Þ

Let

a ¼ 1
sin npnp

b ¼ g2
g1

c ¼ f2g
2
1

d ¼ C �nþ1ð ÞC 2nð Þ
C nð Þ

f ¼ g3
g1

g ¼ f2g1g2
h ¼ f3g

3
1

j ¼ C nþ1ð ÞC nð Þ
C 2nð Þ

k ¼ C �nþ 1ð Þ

The above variables were substituted into Eqs. (54),
(55), (57), (58), and (59) and solved for A, B, X, Y, and
W. Mathematica (Wolfram Research Inc, 100 Trade

Center Drive, Champaign, IL 61820 Version 4.0) was
used in solving these equations and the reason the above
substitutions were used was to simplify the equations for
the software and decrease computation time.

The values obtained are given as follows:

A ¼ �ac
2bd

B ¼
a 2abcgþ 2ac2dfjþ abcgjþ a2c2gj� 6abcdgj
� �

6b2dfk

X ¼ �b
ac

Y ¼
2 �b2cdfþ 2b3dg
� �

a2c2 2cdfþ acg� 6bdgð Þ

W ¼ �2ac
2df� a2c2gþ 6abcdg

2b2dh

The forms obtained here for A, B, X, Y, and W are
quite complex. Calculation of their values and entering
them into Eqs. (47) and (49) would be an arduous task.
For the experimental data considered, a two term for-
mulation models creep within a reasonable degree of
accuracy. Then, a three term fit is avoided.

Applications of the interrelations

The interrelations (formulation 3) were applied to pri-
mary creep data for ligament and for aluminum alloy as
follows.

Ligament data were collected for both creep and
relaxation at different stress and strain levels respectively
(R. Hingorani (unpublished)). Rabbit medial collateral
ligament was tested for a period of 100 s followed by a
period of recovery which lasted 1000 s. Relaxation tests
were run consecutively at different strain levels. The
stress relaxation was carried out first and the corre-
sponding creep test was carried out on the contralateral
ligament. No preconditioning was done on the ligament,
however a preload of 0.5 N was applied to the ligament.

Ligament data were plotted on a log-log scale with
the first point plotted at 1 s into the test. The rise time
was 0.1 s. It was seen that the results were non-linear in
time and stress or strain within the physiologic range
which was also pointed out by Provenzano et al. (2001)
for rat ligament. The creep rate was seen to decrease
with higher levels of stress and the rate of relaxation was
seen to decrease at higher levels of strain.

The method used to fit the curves was as follows. The
time scale of the creep and relaxation was divided by t1
(1.5 s for the ligament data and 10 s for the metal data)
in order to simplify calculation of powers. Isochronal
plots of strain vs. stress were generated for two different
times. The first isochronal was curve fitted with
e=g1r+g2r

2 based on formulation 3 to obtain the
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values for g1 and g2. The second isochronal at t2 (90 s
for the ligament data and 388 seconds for the metal
data) was curve fitted with Eq. (37) with known values
of g1 and g2 to obtain n and m. These values of g1, g2, n,
and m were used to fit the different creep curves with
Eq. (37). Using the interrelation in Eqs. (43), (45), and
(46), the predicted relaxation curve was generated.

A strain stiffening kind of nonlinearity is observed in
ligaments which means that for a large change in stress
there is a small change in strain. So in the creep com-
pliance equation, J(t)=g1t

n+g2rt
m as the level of r in-

creases, J(t) has to correspondingly decrease due to the
strain stiffening kind of nonlinearity. For this to happen,
g2 has to be less than zero which is observed while fitting
the creep curves. Similarly, as the level of strain in-
creases, the relaxation modulus has to increase. So in the
relaxation modulus equation, E(t)=f1t

)n+f2et(
)3n)m )as

the level of strain increases, E(t) has to correspondingly
increase. For this, f2 has to be greater than zero which is
consistent with our results.

An additional comparison was done for creep of
aluminum alloy. Data were collected for both creep and
relaxation at different stress and strain levels respec-
tively (T. Jaglinski (unpublished)). Aluminum-silicon
alloy was tested at 220 �C at 31 MPa and 57 MPa for
creep and 430·10)6and 850·10)6 strain for relaxation.
The rise time was 2 s for creep. Data were plotted on a
log-log scale with the first point plotted at 10 s into the
test. Results of the curve fit of creep for aluminum alloy
are shown in Fig. 2, and comparison of predicted and
experimental relaxation shown in Fig. 3. Corresponding
results for ligament are shown in Figs. 4 and 5. Both
the modeling and the prediction of relaxation was of

good quality over the window of time and strain
considered.

The analysis has the following limitations. The model
for creep and relaxation that we have used for comparison
with experiment is a first order one in stress dependence.
Therefore it is appropriate forweaknonlinearity such as is
seen in a restricted window of stress and time in the
experimental results used for comparison. Within that
window it predicts the relaxation very well from the creep.

Fig. 2 Curve fitting of creep of aluminum alloy 51 K. Data of
aluminum creep at two different stress levels r1 (31 MPa) and r2
(57 MPa). g1 and g2 are obtained from the first isochronal and
these values are used in the 2nd isochronal to get n and m. These
values are used to fit the creep curve at r1 (31 MPa) and r2
(57 MPa) with e(t)=g1rt

n+g2rt
m. The points give the experimental

results while the dashed line is the curve fit

Fig. 3 Prediction of relaxation from creep; comparison with
experimental relaxation of alloy. The two corresponding strain
levels for relaxation are e1 (430x10-6) and e2 (850x10-6). Similarly
relaxation data of aluminum for two different strain levels are
predicted very well by the interrelation used in Formulation 3. The
points give the experimental results while the dashed line is the
theoretical prediction

Fig. 4 Curve fitting of creep of ligament. Data of rabbit medial
collateral ligament at two different stress levels r1 (18.4 MPa) and
r2 (41.2 MPa). Points (dense): experiment. g1 and g2 are obtained
from the first isochronal and these values are used in the 2nd
isochronal to get n and m. These values are used to fit the creep
curve at r1 (18.4 MPa) and r2 (41.2 MPa) with e(t) = r[g1t

n +
g2rt

m]. Dash line: curve fit
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The superposition approach developed here is amenable
to higher order expansion of the kernel as illustrated in
formulation 4 above. Such formulations could provide a
wider window of applicability at the cost of additional
complexity. It is also possible that the single integral
constitutive equation considered here may not suffice
regardless of the kernel. In that case, a multiple integral
constitutive equation may be used.

Conclusions

In this work, creep and stress relaxation are interrelated
for primary creep described by a sum of power-law
terms in time, within the framework of single integral
nonlinear superposition. If the nonlinearity is of a strain-
stiffening type, as is the case with ligament, relaxation
proceeds more rapidly (a greater slope on a log log scale)
than creep. If the nonlinearity is of a strain-softening
type, relaxation proceeds more slowly than creep.

A two-term interrelation applied to stress-dependent
creep for ligament gives rise to excellent prediction of
nonlinear stress relaxation of ligament.

Appendix A

From the proof given below in Appendix B we get

Z t

0

ns�n t� sð Þn�1ds ¼ n C �nþ 1ð ÞC nð Þ: ðA1Þ

However there is a standard identity (Artin 1964) for
the product of gamma functions on the right hand side
in Eq. (A1) which is given as

C �nþ 1ð ÞC nð Þ ¼ p
sin np

So Eq. (A1)can therefore be written as

Z t

0

n:s�n t� sð Þn�1ds ¼ np
sin np

: ðA2Þ

Appendix B

The method used to solve the integral of type used in the
formulation is as follows:

Z t

0

sm�1 t� sð Þn�1ds: ðB1Þ

Rewriting Eq. (B1) in a different form we get

Z t

0

sm�1tn�1 1� s
t

� �n�1
ds: ðB2Þ

Let
s
t
¼ u

therefore s ¼ ut

therefore ds ¼ t du

So when s=0, u=0and when s=t, u=1
Substituting the above result in Eq. (B2), we get

Z t

0

utð Þm�1tn�1 1� uð Þn�1t du:

tmþn�1
Z t

0

um�1 1� uð Þn�1 du:

ðB3Þ

The integral part in Eq. (B3) is nothing but a Beta
function (Andrews 1985), the definition of which is given
as

B m; nð Þ ¼
Z t

0

sm�1 1� sð Þn�1ds ¼ C mð ÞC nð Þ
C mþ nð Þ :

So the final result can be written as

tmþn�1B m; nð Þ ¼ tmþn�1
C mð ÞC nð Þ
C mþ nð Þ ðB4Þ

Fig. 5 Prediction of relaxation from creep; comparison with
experimental relaxation of ligament. The two corresponding strain
levels for relaxation are e1 (3.5%) and e2 (6.6%). Similarly
relaxation data of rabbit medial collateral ligament for two
different strain levels are predicted very well by the interrelation
used in Formulation 3. The solid line in the figure gives the
experimental curve while the dashed line is the theoretical
prediction
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