for approximate and/or numerical models such as, for

example, the finite element technique. For this reason, Table

I is appended, giving viaues of K, (correct to three decimal
places) for various ¢’s and 4's.
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A Pathological Situation in Micropolar
Elasticity -

R.S. Lakes!

The case of zero coupling number N in micropolar elasticit y is
considered. This situation has been examined b y several
investigators to simplify the analysis of micropolar materials.
We show that the case of N=0 is pathological and present a
physical example.

Introduction

Micropolar elasticity is a continuum theory that allows
degrees of freedom not present in classical elasticity. The
extra degrees of freedom are thought to describe some aspects
of the deformation of materials with microstructure. The
constitutive equations for a linear, isotropic micropolar solid
are [1]: .

Ty =N+ Quatk)ey +k € (P =) 1

M=o ¢, .66+ 8 bri+v b1k 2)
in which 1 is the asymmetric force stress, m is the couple
stress, e, = Ya2(uy, + wu;,)7is the small strain, w is the

displacement, ¢ is the microrotation, and ey, is the per-
mutation symbol. r, = Ve, u,,, is the macrorotation, which
is kinematically distinct from the microrotation. «, B, v, and «
are micropolar elastic constants; when they vanish, classical
elasticity is recovered as a special case.

Significance of «

Following [2, 3] we define the coupling number N: N2 =
&/2(u+x). N is dimensionless and its range of permitted
values is [0, 1], based on energy considerations [2]. N is a
measure of the intensity of coupling between the
microrotation and macrorotation fields. When N = 1, these
fields become perfectly coupled, so the microrotation ceases
to be an independent kinematical degree of freedom. This
special case corresponds to the indeterminate couple stress
theory [4]. For this case, many of the effects predicted to
occur in a micropolar solid, e.g., stiffening of thin rods in
bending [3] and in torsion [5), and reduction of the stress
concentration around a hole [2], are maximum,

Several authors have considered the special case x=0, or
equivalently, N=0. This special case may considerably
simplify problems for which it is difficult to obtain an explicit
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solution {6] or may be used to explore limiting behavior of
solutions of micropolar problems [7). The solutions to some

problems are observed to coincide with classical elasticity, if
L il

N=0,{2, 1].

A Torsion Problem

The problem of quasistatic torsion of a long circularjy
cylindrical rod of an isotropic, micropolar medium has bctn
solved by Gauthier and Jahsman [5]. In this Note we explore
solutions to this problem for the case of zero coupli
number. In the general torsion problem, the displacement ang
microrotation fields are uniquely specified by the applied
torque and by the assumption of translational symmelry in
the axial direction. For the case of zero coupling number N we
observe a different situation: a given value of applied torque
can be realized in more than one way.

Specifically, the case of zero applied torque ma i
by either of the following displacement ﬁelcés: mey be realize

u, =0 ¢, =C2(_Q/(2a+6+7))l'
Ug =C,rZ ¢o =0 S (3)
u, =0 ¢ =Cyz

in which C, = - C,[(R%/2) (w/[(8 + ¥ +all - an
; ! . 2+ 8

+ M), R is the cylinder radius and C, is a

dimension 1/length; and ! ny number of

u, =0 ¢, =0
UG =O ¢9 =O (‘)
. =0 ¢, =0

In field (3), there arise opposing, nonzero states of force stresy
and couple stress that result in zero net torque upon the end
surfaces. In keeping with the boundary conditions, there musy
be a prescribed self-equilibrated distribution of force stress
and couple stress upon the end surfaces, or the displacement
and microrotation must be prescribed on these surfaces. For
the case N=0, by contrast it is not possible to achin-; the
displacement and microrotation field (3) since the difference
betyveen the macrorotation and microrotation Bives rise to an
antisymmetric contribution to the force stress by virtue of (1)
for k#0. This contribution makes it impossible to satisfy the
equilibrium equations, therefore for N#0, field (4) is the
unique displacement and microrotation field associated with
zero end torque (and zero end force).
For the special case N=0, the constitutive e uatio

(2) may be used to show that field (3) satisﬁesqthe cqrfil(i:x)riﬁ
equations and boundary conditions. Field (3} also mug
automatically satisfy the micropolar compatibility conditions
[1] since the displacement-rotation field, rather than the xm.‘in
field, has been prescribed. This may be verified by using the
tensorial form of the compatibility conditions to obtaig ag
expanded form for cylindrical coordinates, The expanded
form given in [8] must be viewed with caution since thig
version has been specialized under the implicit assumption
that the micropolar strain ey = ey, + ey, (r, — %) hasno z
dependence. This assumption does not apply to field (3):
therefore the full compatibility conditions given in [1] must be
considered. In field (3), the conventional strain ey, is,
however, independent of z and, with N = 0, the strcs.sc‘; 2re
also independent of z.

Discussion and Conclusion

The casc N=0 does not correspond to a fajluge of
uniqueness in the usual sense, since different local boun
tractions are associated with the displacement  ang
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microrotation fields (3), (4). The total macroscopic load,
however, is the same at the end, which may be arbitrarily far
from the region of interest. The different stress distribitions
at the end in fields (3) and (4) are therefore equivalent in the
sense of Saint-Venant. In this sense, the case N=0 is
pathological. For some specific problems, the solution for
N=0 is found to coincide with the solution for classical
elasticity. This case is not equivalent to classical elasticity,
however; the microstructural degrees of freedom remain.
Classical elasticity is recovered as a special case of micropolar
elasticity only if @, 8, v, and « all vanish.

A physical example that exhibits some features of the
situation just considered is as follows. Consider a long rod of
a composite material made of parallel stiff fibers embedded in
a compliant matrix. Fiber orientation is random, so
macroscopic properties are isotropic. The spatial average of
force per unit area upon fibers and matrix may be regarded as
the force stress, and the corresponding spatial average of
couple upon each individual fiber, per unit area, may be
regarded as'the couple stress. At each end of the rod, we may
macroscopically twist the end by a given angle, and
microscopically twist the end of each fiber in the opposite
direction until the net end torque is zero. If the interface
between fiber and matrix is perfectly lubricated, the effect of
the end displacements and rotations may be expected to
propagate an arbitrary distance down the rod. This situation
is analogous to the continuum case N=0 considered in the
foregoing. Significant end effects may also occur in classical
elasticity of highly anisotropic materials [9]; by contrast the
preceding example depends on micromechanical degrees of
freedom rather than anisotropy. S

Micropolar elasticity has been found to be useful in the
interpretation of recent experiments upon solids with fibrous
[10] and cellular [11] structures. Nonzero values of N were
inferred from these experiments. No structures corresponding
to the preceding physical example, however, were studied.

To conclude, the special case N=0 in micropolar élasticity
is pathological in that specification of the macroscopic end
load on a rod does not uniquely determine the displacement
and microrotation fields far from the end. The dependence of
these fields on remote, localized distributions of self-
equilibrated load calls into question the applicability of Saint-
Venant’s principle for such solids.
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Effect of Debonding on the Stability of
Fiber-Reinforced Composites

J. Barber' and N. Triantafvllidis'

1 Introduction

In this work we present some analytical solutions to a
model problem in order to elucidate the effects of a
preexisting debonding between fiber and matrix on the
stability properties of reinforced composites.

Our analysis is motivated by some recent experimental] [1]
and theoretical investigations [2, 3] on delamination buckling
of fiber-reinforced and laminated composites subjected to
compressive loads along the reinforcing direction. Of par-
ticular interest is the effect of the debonded length on the
critical buckling load which is investigated here for two ex-
treme cases of the fiber-to-matrix relative stiffness. By
ignoring fiber interaction effects and using a simple model for
our problem, we are able to obtain closed-form analytical
solutions.

More specifically, we consider a beam on two elastic type
foundations. The effect of debonding in a certain region is
modeled by the local exclusion of tensile lateral forces.
Realistic buckling loads and eigenmodes have been found for
all the cases considered and all critical loads were of the same
order of magnitude as that for the fully bonded composite.
Our results at this stage are preliminary in nature, but they
indicate the possibility of solution of some more complicated
but more realistic delamination buckling problems.

2 Fiber Buckling in a Soft Matrix

To study the effects of debonding in the fiber buckling of a
soft matrix composite, the matrix material on each side of the
fiber is idealized as an elastic foundation of modulus £. Two
cases will be considered. In the first case the entire fiber is
assumed to be debonded from the matrix material so that
tensile stresses at the matrix-fiber interface are nowhere
allowed. In the second case debonding will be assumed onlyin
a finite zone of length 2a.

2.1 Fully Debonded Fiber (Debonded Zone - o
=x=<+ ). Inthecaseof full debonding, every point of the
fiber will be in contact with one of the two foundations (the
one corresponding 1o a compressive distrbuted load). Con-
sequently, the problem is equivalent to the buckling (under a
lateral force P) of a continuous beam resting on only one
elastic foundation of modulus k. The critical load for this case
is well known (see, for example, Timoshenko and Gere [4n
and is

P,=(4 k ED* 2.1

where E7 is the fiber’s bending stiffness. For the fully bonded
fiber, of course, both the elastic foundations on each side of
the fiber will be active at buckling, and the total effective
foundation stiffness will be 2k. Therefore the corresponding
lateral buckling load P, should be given by

P,=@8 K EN" (2.2)

For the partially bonded fiber to be analyzed subsequently,
the corresponding critical load P, is expected to satisfy
P,<P,<P,. '

2.2 Partially Debonded Fiber (Debonded Zone -ga
<x=<a). If u(x)isthelateral displacement of the fiber due to
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